Causality 101 for Geoscientists & Strategies for Successful Collaboration

Imme Ebert-Uphoff

Research Faculty, Electrical and Computer Engineering, Colorado State University

AGU Workshop on

Emerging Data Science and ML Opportunities in the Weather and Climate Science

Dec 13, 2018

Overview

- A few concepts from causality theory to convince you that this is solid science and give you some intuition. [Link to tutorial paper for climate scientists]
- **2.** Applications in climate science to convince you that this is useful in climate science.
- **3. Strategies for successful collaboration** between climate scientists and data scientists.

Causal Discovery Methods

- Seek to identify cause-effect relationships from observed data.
- A few milestones:
 - Granger (1969): Granger causality Causality defined based on predictability.
 - Pearl (late 1980s):
 - Causal Calculus.
 - Graph language, probabilistic graphical models.
 - Spirtes, Glymour, Scheines (1990s): [LINK TO FREE BOOK]
 - Practical algorithms for causal search.
 - Dealing with hidden common causes.

Two Types of Causality Studies

1) Intervention Study: when interventions are possible.

Supports **necessary** and **sufficient** conditions for causality.

But: In climate science rarely possible!

2) Observational Study: purely from observations / model output.

Only supports **necessary** conditions for causality

- \rightarrow Weaker statements possible, but still powerful.
- \rightarrow Topic of **this talk**.

Concept 1: Graphs as Language for causal models

Express causal relationships as graph

- Variables are nodes of graph.
- Arrows indicate: cause → effect.

In this example:

- Three variables.
- X is a cause of Y.
- Y is a cause of Z.

You should have a question here...

Arrows indicate direct causes only. In this plot:

- X is a **direct** cause of Y.
- Y is a **direct** cause of Z.
- X is only an **indirect** cause of Z.

Goal of causal analysis: we want to identify only direct connections. Eliminate all others.

Why eliminate indirect connections?

- 1) Sparsity, simplicity.
- 2) Only then can you understand effect of interventions!

Concept 3: Directness is relative property

One can always transform a direct connection into an indirect one by including an intermediate cause!

Monsoon month is **direct** cause of flooding in this model.

Monsoon month is only **indirect** cause of flooding in this model.

Both models are correct!

Directness is only defined relative to variables included in model.

Concept 4: Causality is probabilistic relationship

This graph implies:

- 1) Flooding is *more likely* in monsoon months, but *not* certain.
- 2) Flooding can also happen outside of monsoon months.
- → Supplement graph with probabilities.
 → Probabilistic graphical model.

When learning these models from data: Step 1: Identify **graph structure** from data – hard! Step 2: Determine probabilities afterwards – very easy!

Here: Care only about graph structure.

Concept 5: Hidden common causes (latent variables)

If we remove the common cause (Cloud cover) in model:

Can no longer get a correct causal model!

Conclusion:

1) We can never prove causal connections (w/o interventions).

2) But we can disprove causal connections (w/o interventions).
 → Tool for that: Conditional independence tests.

How can we remove connections based on data?

The following 4 questions are equivalent:

1) Can we eliminate edge between X and Z?

2) Is there *direct* connection between X and Z?

3) "Is X conditionally independent of Z given Y?"

```
4) Is P(X | Y,Z) ≈ P(X | Y)?
```

If yes for any of the above: eliminate edge between X and Z.

→ Use conditional independence test:

Many statistical tests available to test for conditional independence.

An elimination algorithm: PC algorithm

Now we have: Statistical test to detect and eliminate *indirect* connections (graph edges).

Basic algorithm for learning <u>independence graph</u> from data:

- 1. Nodes of graph = observed variables.
- 2. Start with **fully connected graph** = assume that every variable is a cause of every other variable.
- 3. Eliminate as many edges as possible using conditional independence tests.
- 4. Establish arrow directions (using more statistical tests or temporal constraints).

Elimination procedure.

Whatever is left at end: **potential causal connections.**

Whatever is left at end: **potential causal connections.**

- In climate science there may always be a hidden common cause
 - that we are not aware of,
 - that cannot be measured,
 - or including them all may make model too complex.
- Need to keep that possibility in mind when interpreting results
 → results are only causal hypotheses.
- Each hypothesis could be direct connection, due to hidden common cause, or combination of both.

Application 1: Arctic connection to jet stream

- Dominant relationships: Positive for jet speed, negative for jet latitude.
- Both are thus positive (reinforcing) feedback loops.

Application 2: Spatially-distributed systems

Nodes = grid points (each with associated time series) Input: Atmospheric field on global grid Example: 500 mb geopotential height

• NCEP/NCAR Reanalysis, 1948-2011, results for winter (DJF months)

Output:

• Interactions between grid points.

Ebert-Uphoff & Deng, GRL 2012. [<u>LINK</u>]

Evaluation Step

Application 3: Apply to Climate Model Runs

Baker et al., [LINK] Geoscentific Model Development, 2016

- Calculate "causal signature" for individual model outputs (e.g. different initial conditions), then compare their "signature".
- First experiments: use only 15 variables, use **global averages**.
- Applications: effect of compression, error check, understanding of differences between ensemble members or models.

Causal Discovery - Summary

Limitations:

- **Causal interpretation requires caution:** can only identify *potential* cause-effect relationships.
- Further limitations discussed in: Jakob Runge, Causal network reconstruction from time series, Chaos, 2018. [LINK]
- Causal discovery is *not* a magic bullet.
- But solid tool **underutilized** in the geosciences.

Proposed Use:

- Can help climate scientists sift through increasing amounts of available data to generate new hypotheses.
- Primary purpose: Generate hypotheses.

Tough Question

How many different disciplines do you have to cover in your team for efficient interdisciplinary collaboration in climate science and data science?

Areas of expertise

Here are two areas – but what else?

Question

Hint: the 3rd area is mentioned on this slide.

How many different disciplines do you need to cover in your team for efficient interdisciplinary collaboration in climate science and data science?

Three areas of expertise

Important: The three different areas do <u>not</u> have to be represented by 3 different people. For example, the idea is more to have the team members learn the interdisciplinary skills, rather than bringing in another person.

Interdisciplinary Studies

- Is its own research area!
- Goal: Draws on disciplines to *integrate* their insights.
- Integration literally means to make whole. [...] integration is a process by which ideas, data and information, methods, tools, concepts and/or theories from two or more disciplines are synthesized, connected, or blended.

Source: Repko, Allen F., Interdisciplinary Research: Process and Theory. SAGE Publications, 2011. [LINK]

Perfect example of full integration:

• Theory-guided data science (TGDS – Karpatne et al.).

Interdisciplinary Habits of the Mind

Subset of ID habits of the mind:

• Set aside personal convictions;

Source: Newell and Luckie, *Pedagogy for Interdisciplinary Habits of the Mind*, Conference on Interdisciplinary Teaching and Learning, 2012. [LINK]

- Strive for a feel of each discipline's perspective;
- Embrace contradictions (ask how it can be both);
- Look for unexamined linkages and unexpected effects;
- Strive for balance (among disciplinary perspectives)
- Don't fall in love with a solution until you understand the full complexity of the problem;
- Value intellectual flexibility and playfulness.

Helpful Personal Qualities and Skills

Foster these skills in yourself & Look for these skills in collaborators.

- Communication skills, organizational skills;
- Broad interest, flexibility, creativity, openness;
- Tolerance for ambiguity;
- Transcendence of disciplines;
- Respect toward people, perspectives, and cultures;
- Scientific skills for gathering, translating, analyzing, structuring, weighting and valuing, and synthesizing knowledge and information.

Source: Flinterman et al., *Transdisciplinarity: The New Challenge for Biomedical Research*, Bulletin of Science, Technology & Society, Vol. 21, No. 4, 2001. [LINK]

Resources

A) Literature on interdisciplinary studies:

Newell & Luckie, Repko, many others. See links above.

Our own work: Pennington et al., Bridging Sustainability Science, Earth Science, and Data Science through

Interdisciplinary Education, submitted to Sustainability science (in review), 2018.

B) Examples of Interdisciplinary Graduate Programs (NSF NRTs) that teach interdisciplinary studies:

1. Univ. of Chicago:

Data science for Energy and Environmental Research [LINK]

2. UC Berkeley:

Environment and Society: Data Science for the 21st Century [LINK]

3. Northwestern University:

Integrated Data-Driven Discovery in Earth and Astrophysical Sciences [LINK]

Source: Cartoon guide: [LINK] Ebert-Uphoff and Deng, Three Steps to Successful Collaboration with Data Scientists, **EOS**, **Aug 2017**.

Climate scientist

Data scientist

Observations:

- 1) Many tasks cannot be split into two separate parts that each person works on independently.
- 2) Many decisions must be made *together*, requiring both of their special knowledge. **Therefore:**
- 1) Peter and Andrea cannot stay completely on their own side.
- 2) Each person needs to have a basic understanding of the thinking process of the other person.
- 3) Each person must be willing to teach / learn some basic vocabulary and tools.
- 4) Constant feedback from both sides is essential. Talk to each other, talk, talk, then talk some more!

Causal Discovery Collaborators

Yi Deng Earth and Atmospheric Sciences, Georgia Tech

Dorit Hammerling NCAR

Elizabeth Barnes Atmospheric Science, Colorado State Univ (CSU). Allison Baker NCAR

Collaborators on "Interdisciplinary Collaboration":

- Deana Pennington, UT El Paso.
- Jo Martin, Univ. Vermont.
- Natalie Freed, UT Austin.
- Suzanne Pierce, UT Austin.
- Yi Deng, Georgia Tech.

Savini Samarasinghe Ph.D. student at CSU (with Imme).

Marie McGraw Ph.D. student at CSU (with Libby Barnes).

Join Existing Communities

1) Climate Informatics

- Annual workshop often at NCAR
- Go to: <u>Climateinformatics.org</u>

2) IS-GEO

- Intelligent Systems in the Geosciences
- NSF RCN (Research Coordination Network)
- Monthly telecons
- Go to: <u>Is-geo.org</u>