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The sub-grid parameterization problem

Goal of atmospheric modeling

Represent the physical processes in the atmosphere as accurately as possible.
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Traditional parameterization development

Dynamics

Subgrid
parameterization
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Growing frustration with state of climate modeling

b - Amplifying Damping
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“Most uncertainty caused by
but they do not appear to be so strong as the positive moisture feedback. We representation of subgrid clouds”

estimate the most probable global warming for a doubling of CO, to be near
3°C with a probable error of + 1.5°C. Our estimate is based primarily on our

Schneider et al., 2017. Nature Climate Char
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Global cloud resolving simulations

SAM ©Marat Khairoutdinov
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Building a machine learning parameterization

Dynamics

The plan
1. Run a cloud-resolving training simulation
2. Train an efficient machine learning algorithm

3. Replace the original GCM parameterization

Cloud-resolving
simulation

Machine learning
algorithm

Rasp, S., Pritchard, M. and Gentine, P., 2018. Deep learning to represent sub-grid processes in climate models. PNAS.
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G. and Yacalis, G., 2018. Could machine learning break the convection parameterization deadlock? GRL.
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What is a heural network?

a Hidden layers

) g Tarset fram
inp = Input(shape=(feature_shape,)) ata
# First hidden layer
x = Dense(hidden_layers[0], kernel_regularizer=12) (inp) Subgrid

x = act_layer(activation) (x)

|/ if len(hidden_layers) > 1:

for h in hidden_layers[1:]:
x = Dense(h, kernel_regularizer=12)(x)
x = act_layer(activation) (x)

Prec

# Output layer

Dense(target shape, actlvatlon—'llnear , kernel regularlzer-IZ)(x) an

d z) =maz(0, 2)

g(a)=max(0, a)
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How well does the neural network do?

Precipitation distribution
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2018: Machine learning parameterizations

Deep learning to represent subgrid processes in
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« Random-forest parameterization

of convection gives accurate GCM

simulations of climate and Paul A. O'Gorman'""' and John G. Dwyer'

precipitation extremes in idealized

tests Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
« Climate chanae cantured when
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O’Gorman and Dwyer: Random forest

Feature(f) Feature(f)
) Tree t, Tree t,

* ML algorithm: Random forest

* Ensemble of binary decision trees

* Predictions are means over subsets

from training data
Py (clf) Py (clf)
 Compared to neural networks
5

* Advantages: Physical constraints from )
training data conserved, potentially P(CIf)=ZPn(CIf)

better for small sample sizes Machine learning is only a gray box!

(a) Linear response (b) Feature importance

* Disadvantages: Less (potential)
predictive power, struggle with very 0.2 { e homity

large data amounts
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O'Gorman and Dwyer, 2018. JAMES.
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Key challenges for machine learning parameterizations

#1: Stability #2: Physical constraints #3: Generalization

How bad are neural networks
How can we makg sure a ML How can We enforce N at generalizing in a realistic
parameterization is stable conservation laws and positivity climate?

when coupled to the dynamics? constraints?
How can we enhance the

generalization capabilities?

#4: Stochasticity #5: Tuning

How do we deal with chaos in

training data? How can we fix biases after the

, _ offline training stage?
Can we build a stochastic ML

parameterization?
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Data-driven parameterization development

* ///

grid box

One algorithm to rule them all Learn in existing framework
* Captures process interactions  Respect known physics
* No heuristic biases  More interpretable

“How to best combine physical reasoning and available data?”
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