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Theory-based vs. Data Science Models
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Theory-based vs. Data Science Models

Contain knowledge gaps in
describing certain processes
(turbulence, groundwater flow)

Take full advantage of data
science methods without ignoring
the treasure of accumulated
knowledge in scientific “theories”
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Require large number of
representative samples

1 Karpatne et al. “Theory-guided data science: A new
paradigm for scientific discovery,” TKDE 2017



lllustrative Case Study:
Modeling Lake Quality (Temperature)

e Motivation:
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Growth and survival of fisheries Harmful Algal Blooms Chemical Constituents:
0, C N

 1-D Model of Temperature:
Target: Temperature of water at every depthin a lake

Input Drivers (observed via meteorology):

h Short-wave Radiation, Relative Humidity,
Long-wave Radiation, Wind Speed,
Air Temperature, Rain, ...




Modeling Temperature using Physics-based Models

e Standard Paradigm for Scientific Computing

Input Drivers: X¢ Conservation of mass,
solar radiation, l momentum, energy
air temp., ... dp
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lHipsey et al., 2014



Limitations of Physics-based Models

x  Unknown parameters (@) need to be “calibrated”
t : .
— Computationally Expensive
PHY l — Easy to overfit: large number of parameter choices, small
number of samples
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Limitations of Physics-based Models

Xt
PHY l
Zy
0 * Incompleteor missing physics (F, G)
F G — Physics-based models often use approximate forms to meet
“scale-accuracy” trade-off
l — Resultsin inherent model bias
Yt

Lake bathymetry often simplified
using approximate forms




“Black-box” Data Science Models

* An alternative to physics-based modeling?

Choice of model family
not governed by physics

LSTM
Gates,
Attention,

Support Vector Machine

Yt

®* Requires calibration ®* Require lots of data
of model parameters * Ignorant of physical
* Incomplete physics knowledge




Hybrid-Physics-Data Models

* A paradigm shift in data-intensive scientific modeling

Xt
PHY + DS
Zt ct
LSTM
o <-p Gates,
F G Attention,
Yt
* Requires calibration ® Require lots of data Overcomes complementary
of model parameters * |ncoherent with weaknesses of PHY and DS

* |ncomplete physics physical knowledge by combining them together
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A Generic Framework for
Hybrid-Physics-Data (HPD) Modeling:

Input Drivers Black-Box Model
(Solar Radiation,

Air Temperature,

Relative Humidity, \ .l
Wind Speed, ...)
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A Generic Framework for
Hybrid-Physics-Data (HPD) Modeling:

Input Drivers Hybrid-Physics-Data Model

(Solar Radiation,

Air Temperature,
Relative Humidity, \ .l
Wind Speed, ...)
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l hidden layer 1 hidden layer N
Ypny : - ,
(Temperature) Challenge with training Al methods:

Ypreqa may violate physical relationships
b/wY and othervariables



Physical Relationships of Temperature

Temperaturedirectly related

to density of water Denser water is at higher depth
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Use physics-based loss functions:
* Measureviolations of physical relationships b/w Y,,.4 and other variables
 Does notrequirelabeled data!



Physics-guided Neural Network (PGNN)!

Labeled Data

+

Ypuy

Unlabeled Data

Drivers | 3 "

input layer
hidden layer 1 hidden layer N

Drivers
+

Objective Function :=
Training Loss (the,Ypred) + AR(W) +

Apyy Physics-based Loss (Ypred)

Ypuy

IKarpatne et al., “Physics-guided neural networks (PGNN):

Ypred

An Application in Lake Temperature Modeling,” arXiv: 1710.11431, 2017.

Training
Loss

(Ytrue» Ypred)
_|_
AR(W)

Physics-based
Loss (Ypred)



Test RMSE

Experimental Results
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Test RMSE

Experimental Results

Lake Mille Lacs, MN

1.8

¢ PHY

—_
IS
T

—_
N
T

0.8

0.6 ‘ : : : ‘ J
0 0.2 0.4 0.6 0.8 1
Physical Inconsistency



1.8

Test RMSE
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Include physical consistency as another evaluation criterion,
going beyond standard metrics for test error 20



Alternate Ways of Incorporating Physics in ML

e QOther Physics-based Loss Functions:
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Physical Constraint:

Physical relationship b(w Denser wateris at higher depth RLW
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Depth-Density Constraint in Conservation of Energy in
Multi-layer Perceptron Network Recurrent Neural Networks

* Pre-training ML models using Physics

— Train ML methods using physical simulations
— Fine-tune using observational data



Test RMSE (°C)
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Use of Scientific Theory
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AGU 2018 Poster IN41D-0872:

) Read et al., Process-Guided Data-Driven modeling of
water temperature: Anchoring predictions with
thermodynamic constraints in the Big Data era

. Jia et al., Physics Guided RNNs for Modeling
| | | _ _ Dynamical Systems: A Case Study in Simulating Lake
5 10 50 100 ogo Temperature Profiles, arxiv: 1810.13075, 2018.

Number of training samples



Summary and Future Directions

Research themes in TGDS

— Physics-guided Learning of ML models

* Loss Functions, Priors, Constraints, ...

— Physics-guided Design of ML models

* Architecture of NN models, LSTM connections, activation functions

— Pre-training ML models using Physical Simulations

* Train Using Combination of Physical Simulations + Observations

— Building Hybrid-Physics-Data Models
* Rectify Model Outputs, Replace Model Components using ML

— Inferring Parameters/States in Physics-based Models

 Parameter Calibration, Data Assimilation
23



