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• This talk is heavily biased towards a
Lagrangian way of thinking

• The review is non-exhaustive and many
schemes are not discussed; see, e.g.,
extensive reviews in the computational fluid
dynamics (CFD) literature such as LeVeque
(2002) and Eymard et al. (2000).



Outline
• Introduction
• Desirable properties for transport schemes

intended for atmospheric flow problems
• Eulerian versus Lagrangian discretizations (and

the equivalence between the two)
• Sub-grid-cell reconstruction
• Lagrangian finite-volume transport schemes
• Eulerian finite-volume transport schemes



“Simplifying Assumptions”
• For simplicity I will explain methods on squared meshes in

Cartesian geometry although most methods could be (in
principle), or have been, generalized to other meshes
(some with less, some with more ease) .

• Almost all schemes I will discuss have been extended to
spherical geometry.

triangles hexagons unstructuredsquare mesh
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Definition
Finite-volume methods are numerical methods, where the
fundamental prognostic variable considered is an integrated quantity
over a certain finite-control volume.

Also referred to as cell-integrated methods.

Thus, instead of representing the
solution in terms of grid-point values
(used in, e.g., finite-difference
methods), weights for expansion
functions (finite-element methods,
e.g., spectral method), cell-integrated
mean values are considered.



Definition
Finite-volume methods are numerical methods, where the
fundamental prognostic variable considered is an integrated quantity
over a certain finite-control volume.

Also referred to as cell-integrated methods.

Finite-volume schemes are inherently
conservative with respect to the
prognostic variable.



Focus on finite-volume methods for the
continuity equation for tracers

(transport equation)

• Before discussing the different finite-volume
schemes used in the atmospheric sciences, it is
important to realize which properties a transport
scheme ideally should possess: Desirable
properties!

• The equation subject to the toughest requirements
is probably the continuity equation for tracers,
such as moisture, for which the spatial distribution
includes sharp gradients.

 



Desirable properties
• Accuracy: Formal truncation error

For sufficiently smooth problems accuracy can be assessed with Taylor Series, e.g.:

Consider one-dimensional advection equation (constant v)

A simple finite-difference approximation (“upstream” or “donor-cell” scheme)

Insert Taylor series expansion about                        to get truncation error:

The “upstream” scheme is first-order accurate in space and time.



Desirable properties
• Accuracy: Formal truncation error

However, for flows with shocks or sharp gradients the formal order of accuracy in terms of a Taylor
series expansions does not necessarily guarantee a high level of accuracy, e.g., advection of a square
wave:

   second-order scheme (Crank-Nicolson)                 first-order scheme (“upwind”)



Desirable properties
• Accuracy: Stability analysis

The linear dissipation and dispersion properties can be assessed by a Von Neumann stability
analysis by representing the discretized solution by a finite Fourier series of the form

and examine the stability of the individual Fourier components.

Purely dissipative numerical scheme                      Purely dispersive numerical scheme



Desirable properties
• Accuracy: Stability analysis

A Von Neumann stability analysis is linear: We assume constant velocities/coefficients and turn
off any non-linearity in the numerical scheme such as filters.

E.g. a Von Neumann analysis of the Lin & Rood advection scheme with second-order inner operators
and third-order outer operators for a constant traverse flow shows that the scheme is slightly unstable
BUT when turning on a filter then the scheme becomes diffusive and stable.

                                             Maximum value of numerical solution for sine wave advection

Lauritzen (MWR, 2007)



Desirable properties
• Accuracy: Idealized test cases

Idealized tests, where the analytical solution is known, are widely used to assess the accuracy of transport schemes.
The accuracy is usually assessed in terms of standard error measures (RMS, etc.).

     Examples of idealized passive tracer advection tests:
Translational tests

Probably the most commonly used idealized test case in the meteorological literature is the solid body rotation
of a cosine cone or slotted cylinder (in Cartesian and spherical geometry).

Zalesak (1979), Bermejo and Staniforth (1992), Williamson et al. (1992)



Desirable properties
• Accuracy: Idealized test cases

Idealized tests, where the analytical solution is known, are widely used to assess the accuracy of transport schemes.
The accuracy is usually assessed in terms of standard error measures (RMS, etc.).

Examples of idealized passive tracer
advection tests:

Movie courtesy of Ram Nair

Deformational tests

• swirling shear flow specified in terms of a periodically reversing time-
  dependent velocity field (Durran, 1999).
• deformational flow test where the solution is known throughout the time of
  integration (Smolarkiewicz (1982), Staniforth et al. (1987))
• Idealized cyclogenesis (Doswell (1984), Rancic (1992), Holm (1995), Nair et
  al. (1999)).



Desirable properties
• Accuracy: Idealized test cases

Idealized tests, where the analytical solution is known, are widely used to assess the accuracy of transport schemes.
The accuracy is usually assessed in terms of standard error measures (RMS, etc.).

Examples of idealized passive tracer
advection tests:

Movie courtesy of Ram Nair

Combination of translational and deformational test

• Moving vortex (Nair and Jablonowski, 2008).



Desirable properties
• Accuracy: Idealized test cases

Idealized tests where the analytical solution is known are widely used to assess the accuracy of transport schemes. The accuracy is usually
assessed in terms of standard error measures (RMS, etc.).

Movie courtesy of Ram Nair

Note, however, that good performance
in idealized settings does not necessarily
imply that the scheme will work well in
a “full” model with “real” data!

But if a scheme does not do well in idealized
test cases it is likely that it will not do well 
in a  “full” model.



Desirable properties
• Accuracy
• Computational efficiency: accuracy versus cost

Should we use a computationally cheap scheme (on a given platform) that is less
accurate that we can afford to run at higher resolution, or should we use an expensive
scheme that is more accurate but that we can only afford to run at coarser resolution?

Low-order scheme

High-order scheme

Resolution

Error

Assume a linear problem!



Desirable properties

Low-order scheme

High-order scheme

Computational cost

Error

• Accuracy
• Computational efficiency: accuracy versus cost

Should we use a computationally cheap scheme (on a given platform) that is less
accurate that we can afford to run at higher resolution, or should we use an expensive
scheme that is more accurate but that we can only afford to run at coarser resolution?

Assume a linear problem!



Desirable properties
• Accuracy
• Computational efficiency: accuracy versus cost
• Shape-preservation, positive-definiteness, monotonicity, non-oscillatory



Desirable properties
• Accuracy
• Computational efficiency: accuracy versus cost
• Shape-preservation, positive-definiteness,

monotonicity, non-oscillatory
• Conservation
• Locality
• Preservation of constancy in a non-divergent flow

field
• See Machenhauer et al. (2008) for a longer list



Finite Volume schemes

  (semi-)Lagrangian      Eulerian

fully 2D      1D sweeps (cascade)    fully 2D dimensional split



Eulerian versus Lagrangian
Equations of motion for the atmosphere can be derived from first principles in either a
Lagrangian or an Eulerian form:

Lagrangian
Describe evolution of the 
flow as would be observed 
following the motion of an 
individual fluid parcel

Eulerian
Describe evolution of the 
flow from a fixed point in 
a coordinate system rotating 
with the Earth

From Prof. Thuburn’s talk



Continuity equation: Eulerian and Lagrangian form

Consider the two-dimensional mass continuity equation for a passive
tracer       (no sources/ sinks) in Eulerian flux form:

where      is the velocity vector and       is the density of the tracer. The Lagrangian form of the
continuity equation is obtained through the following operations:

where

The divergence              can also be written in Lagrangian form                        where
is an infinitesimal area moving with the flow.

Substituting the Lagrangian divergence into the equation above and using the chain rule for
differentiation yields the Lagrangian form of the continuity equation:

Note that the divergence 
does not appear explicitly



Cell-integrated semi-Lagrangian (CISL) scheme
Integrate Lagrangian continuity equation over a cell/volume A moving with the
flow:

Discretizing this equation using backward trajectories, the CISL continuity equation
results:

where         and         is referred to as the departure and arrival area, respectively.

is the is the integral of             over the departure area,
where                is the sub-grid-scale reconstruction.

More on reconstructions later …

Lagrangian finite-volume form



Cell-integrated semi-Lagrangian (CISL) scheme
Integrate Lagrangian continuity equation over a cell/volume A moving with the
flow:

Discretizing this equation using backward trajectories, the CISL continuity equation
results:

where         and         is referred to as the departure and arrival area, respectively.

Lagrangian finite-volume form

Note: If the departure area (trajectories) is exact 
and the reconstruction and integral thereof over 
the departure area is exact then the 
discretized CISL equation is exact!



Eulerian finite-volume scheme
Integrate the flux-form Eulerian continuity equation

over the arrival area           an apply Gauss’s divergence theorem:

where     is the outward pointing unit normal vector of the boundary              .  Discretizing the left-
hand side and time-averaging the right-hand side, yields:

where the angle brackets represent averages in the
x or y-direction and the double-bar refers to the
time average over the time-step        . So the right-
hand side represents the mass transported through
each of the four arrival cell faces into the cell
during one time step.



 



Equivalence between Eulerian and Lagrangian
finite-volume schemes



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

• Piecewise Constant Method (PCoM):

   (Godunov, 1959)



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

• Piecewise Constant Method (PCoM).

• Piecewise Linear Method (PLM):

  (Van Leer 1977)



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

• Piecewise Constant Method (PCoM).

• Piecewise Linear Method (PLM).

• Piecewise Parabolic Method (PPM):

  where       and           is the “slope” and “curvature”
  of the polynomial (computed by interpolation).
  (Collela and Woodward, 1984)

Polynomials are
C0 at the cell
boundaries



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

• Piecewise Constant Method (PCoM).

• Piecewise Linear Method (PLM).

• Piecewise Parabolic Method (PPM).

• Piecewise Cubic Method (PCM) and
  Piecewise Spline Method.

  (Zerroukat et al. 2002,4,5,7)

Polynomials are
C0 at the cell
boundaries



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

 The reconstruction function can be filtered
 to be rendered positive-definite or monotone.

Polynomials are
C0 at the cell
boundaries
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One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

 The reconstruction function can be filtered
 to be rendered monotone.

 Less sophisticated filters tend to make the schemes
 more diffusive than their unlimited versions while
 dispersion properties can be positively affected
 by the filter (Durran, 1999).

Polynomials no
Longer guaranteed
To be C0 at the cell
boundaries
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Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

 The reconstruction function can be filtered
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 Less sophisticated filters tend to make the schemes
 more diffusive than their unlimited versions while
 dispersion properties can be positively affected
 by the filters (Durran, 1999).

More advanced filters can even improve overall
accuracy of the schemes (Zerroukat et al. 2004).

Physical extrema 
should be retained



One-dimensional sub-grid-cell reconstruction

Reconstruct the sub-grid-cell distribution in cell i given the adjacent known Eulerian grid
cell average values                                                   with mass-conservation as a constraint:

Define non-dimensional coordinate                   in the i-th cell

 The reconstruction function can be filtered
 to be rendered monotone.

 Less sophisticated filters tend to make the schemes
 more diffusive than their unlimited versions while
 dispersion properties can be positively affected
 by the filter (Durran, 1999).

More advanced filters can even improve overall
accuracy of the schemes (Zerroukat et al. 2004).

Physical extrema 
should be retained



Examples of “higher-order” two-dimensional
sub-grid-cell reconstructions

• Fully 2D approach (bi-parabolic):

  Requires the computation of 9 coefficients (Rancic, 1992)

• Quasi 2D approach (quasi-bi-parabolic):

   Neglect “diagonal”/”cross” terms (sum of one-dimensional polynomials)
   Nair and Machenhauer (2002)



• Fully 2D approach (bi-parabolic):

  Requires the computation of 9 coefficients (Rancic, 1992)

• Quasi 2D approach (quasi-bi-parabolic):

   Neglect “diagonal”/”cross” terms (sum of one-dimensional polynomials)
   (Nair and Machenhauer, 2002) Note that applying filters in each coordinate direction

does not necessarily guarantee monotonicity since the
there might be monotonicity violating behavior in the
diagonal/cross direction

Examples of “higher-order” two-dimensional
sub-grid-cell reconstructions



Finite Volume schemes

  (semi-)Lagrangian  

Fully 2D



Fully two-dimensional CISL scheme

1. Compute upstream trajectories

Solve ODE                        for each cell vertex.

Usually done with an iterative
method (see, e.g., Staniforth
and Cote, 1990).

Finite-volume semi-Lagrangian



Fully two-dimensional CISL scheme

1. Compute trajectories
2. Approximate departure area

-straight lines (Rancic, 1992): Probably the most
accurate approximation to true departure cell, but
it is algorithmically more complex to integrate over
a general quadrilateral

Finite-volume semi-Lagrangian



Fully two-dimensional CISL scheme

1. Compute trajectories
2. Approximate departure area

-straight lines (Rancic, 1992): Probably the most
accurate approximation to true departure cell, but
it is algorithmically more complex to integrate over
a general quadrilateral

-lines parallel to coordinate axis (Nair and
Machenhauer, 2002): It is algorithmically simpler to
integrate over a polygon with sides parallel to the
coordinate axis (however, directional bias in cell
approximation)

Finite-volume semi-Lagrangian



Fully two-dimensional CISL scheme

1. Compute trajectories
2. Approximate departure area
3. Perform sub-grid-cell reconstruction

Approximate                   in ij-th cell,

from known (Eulerian) cell average
values with mass-conservation (and
monotonicity) as a constraint.

Finite-volume semi-Lagrangian



Fully two-dimensional CISL scheme

1. Compute trajectories
2. Approximate departure area
3. Perform sub-grid-cell reconstruction
4. Integrate

over the departure area

Finite-volume semi-Lagrangian



Fully two-dimensional CISL schemes

The global integral of       is conserved if the departure cells
do not overlap. Mass is conserved locally because we
explicitly track mass moving with the flow.

Finite-volume semi-Lagrangian



Finite Volume schemes

  (semi-)Lagrangian  

                    1D sweeps (cascade)



Cascade CISL scheme

Finite-volume semi-Lagrangian

•  Cast problem into 1D sweeps
  (not fixed directional split but
  flow dependent splitting)

  - compute departure points
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Cascade CISL scheme

Finite-volume semi-Lagrangian

•  Cast problem into 1D sweeps
  (not fixed directional split but
  flow dependent splitting)

  - compute departure points
  - compute Lagrangian latitudes
    (fit cubic polynomial along
     departure points)
  - find crossings between 
    Lagrangian latitudes and
    Eulerian longitudes
  - define upper & lower cell walls
  - 1D remap along Eulerian 
     longitudes to intermediate grid
  - 1D remap along Lagrangian latitude



Cascade CISL scheme

Finite-volume semi-Lagrangian

•  Cast problem into 1D sweeps
  (not fixed directional split but
  flow dependent splitting)

• directional bias (can, however,
  be alleviated by alternating
  sweep direction)

• as accurate as 2D CISL scheme
  of Nair and Machenhauer (2002)
  in idealized test cases 
  (Nair et al. 2002) as well as in full 
  model runs (Lauritzen et al. 2008)

• filters can be applied with great ease (only need 1D filters)



A note on CISL schemes

• Accuracy of trajectories
CISL schemes are more sensitive to accurate trajectories than grid-point semi-
Lagrangian schemes since the divergence is absorbed in the trajectories (Thuburn
2008, Lauritzen et al. 2005, Kaas 2008):

Shallow water and hydrostatic tests show that the acceleration should be included in
the trajectory estimation when using CISL schemes.

• Since the divergence depends on the trajectories (that are
solved for independently), CISL schemes do not (in
general) conserve a constant for a non-divergent flow
field

• CISL schemes are, however, inherently local and allow
for long time steps.

Finite-volume semi-Lagrangian



Finite Volume schemes

          Eulerian

   fully 2D 



Finite-volume Eulerian

 



Finite-volume Eulerian

 

From T.Ringler presentation, NCAR 2008

Other Eulerian fully 2D schemes: Smolarkiewicz (1984), Holm (1995) and many more …

Approximate trajectories with
straight lines …

Usually time-step is limited so that
trajectories depart from adjacent
cells.

Most Eulerian schemes do
not use iterative methods for
the trajectories (simply 
instantaneous winds).



Finite Volume schemes

                    Eulerian

dimensional split

Fixed directional splitting
(not flow dependent splitting)



Finite-volume Eulerian

 

Assume a constant traverse wind field

Simple minded operator splitting scheme:

where         is the flux-divergence in x-direction:
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Note that
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Finite-volume Eulerian

 

Assume a constant traverse wind field

Simple minded operator splitting scheme:

where         is the flux-divergence in x-direction.

Written in “Lagrangian” form (        =1):

Inconsistent (and unstable) - diagonal flux ignored
Stable if CDF<1 and using first-order operators (Leith, 1965)



Finite-volume Eulerian

 

Assume a constant traverse wind field

Spatially symmetric scheme:

where         is the flux-divergence in x-direction.

Written in “Lagrangian” form (      =1):

Consistent for a constant (in space) wind field but for  
non-divergent but highly deformational flows there is a 
strong splitting error (            evaluated in a different 
location  than             )



Finite-volume Eulerian

Assume a constant traverse wind field

No spurious contributions from “divergent part” of inner operators

=> Preserves a constant for a non-divergent wind field

Lin & Rood (1996), Leonard et al. (1996) scheme:

where         is the advective operator in x-direction.



Finite-volume Eulerian

Assume a constant traverse wind field

Written in “Lagrangian” form (      =1):

where        and        are the integrals over the blue area associated with flux and advective
x-operator, respectively.

Lin & Rood (1996), Leonard et al. (1996) scheme:

where         is the advective operator in x-direction.

These operators must cancel otherwise there is a spurious non-local contribution to the forecast
(Lauritzen 2007)



Finite-volume Eulerian

(Lauritzen 2007)

Von Neuman stability analysis of the Lin & Rood scheme 



Finite-volume Eulerian

(Lauritzen 2007)

Von Neumann stability analysis of the Lin & Rood scheme 



Finite-volume Eulerian

(Lauritzen 2007)

Von Neumann stability analysis of the Lin & Rood scheme 



Finite-volume Eulerian

Lin & Rood (1996), Leonard et al. (1996) scheme:

where         is the advective operator in x-direction.

(Machenhauer et al.  2008)

Assume we use the same inner and outer operators (no spurious contributions from 
non-local areas for constant, in space and time, flows). What does the effective departure
area look like for a rotational and divergent flow (example):

Still some small but non-local contributions to the forecast



Filters: A Priori & A Posteriori
• A priori: Filters introduced before the estimation of fluxes or upstream

cell integrations (already discussed)
• A posteriori: Flux limiters, e.g., FCT (Flux Corrected Transport)

introduced by Boris and Book (1976) and Zalesak (1979). Basic idea:

 Combine higher-order fluxes (which are accurate but not monotone)
and low-order fluxes (which are diffusive but monotone).

“Nudge” the low-order flux as much towards the high-order fluxes
without violating monotonicity constraints.

Several types of flux limiters: Bott (1989), Smolarkiewicz and Grabowski (1990),
Rasch (1994), Holm (1995), Xue (2000), etc.



Questions
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