AOSS 321, Winter 2009 Earth System Dynamics

Lecture 5 1/22/2009

Christiane Jablonowski cjablono@umich.edu 734-763-6238 Eric Hetland ehetland@umich.edu 734-615-3177

Class News

- Class web site: <u>https://ctools.umich.edu/portal</u>
- HW 1 due today
- Homework #2 posted today, due on Thursday (1/29) in class
- Our current grader is Kevin Reed (kareed@umich.edu)
- Office Hours
 - Easiest: contact us after the lectures
 - Prof. Jablonowski, 1541B SRB: Tuesday after class 12:30-1:30pm, Wednesday 4:30-5:30pm
 - Prof. Hetland, 2534 C.C. Little, TBA

Today's class

- Definition of the the Total (Material) Derivative
- Lagrangian and Eulerian viewpoints
- Advection

— . . .

- Fundamental forces in the atmosphere: Surface forces:
 - Pressure gradient force

Total variations

Consider some parameter, like temperature, T

Δx

If we move a parcel in time Δt

Using Taylor series expansion

Assume increments over ∆t are small, and ignore Higher Order Terms

Total derivative

Total differential/derivative of the temperature T, T depends on t, x, y, z

Assume increments over Δt are small

Total Derivative

Divide by Δt

Take limit for small Δt

Total Derivative

Introduction of convention of d()/dt \equiv D()/Dt

Definition of the Total Derivative

The **total derivative** is also called **material derivative**.

describes a 'Lagrangian viewpoint'

describes an 'Eulerian viewpoint'

Lagrangian view

Position vector at different times

Consider fluid parcel moving along some trajectory.

Lagrangian Point of View

- This parcel-trajectory point of view, which follows a parcel, is known as the Lagrangian point of view.
 - Useful for developing theory
 - Requires considering a coordinate system for each parcel.
 - Very powerful for visualizing fluid motion

Lagrangian point of view: Eruption of Mount Pinatubo

- Trajectories trace the motion of individual fluid parcels over a finite time interval
- Volcanic eruption in 1991 injected particles into the tropical stratosphere (at 15.13 N, 120.35 E)
- The particles got transported by the atmospheric flow, we can follow their trajectories
- Mt. Pinatubo, NASA animation
- Colors in animation reflect the atmospheric height of the particles. Red is high, blue closer to the surface.
- This is a *Lagrangian* view of transport processes.

Global wind systems

• General Circulation of the Atmosphere

Zonally averaged circulation

Zonal-mean annual-mean zonal wind ×

Eulerian view

Now we are going to really think about fluids.

Could sit in one place and watch parcels go by.

How would we quantify this?

Eulerian Point of View

- This point of view, where is observer sits at a point and watches the fluid go by, is known as the Eulerian point of view.
 - Useful for developing theory
 - Looks at the fluid as a field.
 - Requires considering only one coordinate system for all parcels
 - Easy to represent interactions of parcels through surface forces
 - A value for each point in the field no gaps or bundles of "information."

Temperature advection term

Temperature advection term

Advection of cold or warm air

- Temperature advection:
- Imagine the isotherms are oriented in the E-W direction

- Draw the horizontal temperature gradient vector!
- pure west wind u > 0, v=0, w=0: Is there temperature advection? If yes, is it cold or warm air advection?

Advection of cold or warm air

- Temperature advection:
- Imagine the isotherms are oriented in the E-W direction

- Draw the gradient of the temperature (vector)!
- pure south wind v > 0, u=0, w=0: Is there temperature advection? If yes, is it cold or warm air advection?

Advection of cold or warm air

- Temperature advection:
- Imagine the isotherms are oriented as

- Draw the horizontal temperature gradient!
- pure west wind u > 0, v=0, w=0: Is there temperature advection? If yes, is it cold or warm air advection?

Summary: Local Changes & Material Derivative

Summary: For 2D horizontal flows

Conservation and Steady-State

Remember: we talked about the conservation of money Conservation principle is important for tracers in the atmosphere that do not have sources and sinks

Class exercise

- The surface pressure **decreases** by 3 hPa per 180 km in the eastward direction.
- A ship steaming eastward at 10 km/h measures a **pressure fall** of 1 hPa per 3 hours.
- What is the pressure change on an island that the ship is passing?

Food for thought

- Imagine a different situation.
- The surface pressure decreases by 3 hPa per 180 km in the north-east direction.
- Thus:

What are the fundamental forces in the Earth's system?

- Pressure gradient force
- Gravitational force
- Viscous force
- Apparent forces: Centrifugal and Coriolis
- Can you think of other classical forces and would they be important in the Earth's system?
- Total Force is the sum of all of these forces.

A particle of atmosphere

 $\rho \equiv \text{density} = \text{mass}$ per unit volume (ΔV)

$$\Delta V = \Delta x \Delta y \Delta z$$

 $\mathbf{m} = \rho \Delta \mathbf{x} \Delta \mathbf{y} \Delta \mathbf{z}$

p ≡ pressure = force per unit area acting on the particle of atmosphere

Check out Unit 6, frames 7-13:

http://www.atmos.washington.edu/2005Q1/101/CD/MAIN3.swf

Pressure gradient force (1)

Pressure at the 'walls'

Pressure gradient force (3) (ignore higher order terms)

Pressure gradient force (4):Total x force

We want force per unit mass

Vector pressure gradient force

Class exercise

Compute the pressure gradient force at sea level in x and y direction at 60° N Assume constant density $\rho = 1.2 \text{ kg/m}^3$ Isobars with contour and radius interval $\Delta p = 5 hPa$ a = 6371 km $\Delta\lambda = 20^{\circ} = \pi/9$ 1000 hPa $\Delta x = a \cos \phi \Delta \lambda$ Low pressure system $\Delta \phi = 20^{\circ} = \pi/9$ at 60° N $\Delta y = a \Delta \phi$

Class exercise

Our momentum equation so far

other forces

Here, we use the text's convention that the velocity is

Highs and Lows

Pressure gradient force tries to eliminate the pressure differences