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Outline

1st half…

• What is a framework and why is it useful?

• Some background on ESMF

• Parallel regridding in ESMF

2nd half…

• Using MAPL to wrap components
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W hat is a framework?

In computer science
• “Frameworks” are partially

completed software applications
that users customize and finish
using elements of their own codes

• The prefabricated pieces of the
framework add capabilities and
structure to the user code

In the Earth sciences
• The term “framework” is loosely

applied to many software packages
useful for building models
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Benef its of using  frameworks

Efficiency of development

• Modelers can save development and maintenance effort by leveraging toolkits
for common functions, such as calendar management and message logging

Access to numerical and computational advances

• Frameworks can make advanced numerical techniques, software for optimized
operations on petascale computers, and other specialized capabilities
accessible to a broad set of users

Interoperability

• When many groups use the same or similar frameworks, it is simpler to
exchange and combine model components (such as dynamical cores)

• The comparison, evaluation, and validation of individual model components is
easier if components are cleanly separable and can participate in controlled
experiments
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Frameworks in Earth and space
Sciences

Many different efforts, distinguished by:

Institution - e.g. Flexible Modeling System (FMS) at
GFDL

Domain - e.g. Space Weather Modeling Framework

Scope - e.g. cross-domain Common Component
Architecture

Computing Platform - e.g. OpenMI for Windows

Technical Strategy - e.g. PRISM climate framework
for coupling components that run as separate
programs

fms
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Earth System  Modeling  Framework
( ESMF)

• ESMF provides standard interfaces for model
components

• ESMF provides common utilities and tools for
routine modeling functions such as regridding
between components

ESMF Infrastructure
Data Classes:  Bundle, Field, Grid, Array

Utility Classes:  Clock, LogErr, DELayout, Machine

ESMF Superstructure
AppDriver

Component Classes:  GridComp, CplComp, State

User Code

Status
• Initiated by NASA in 2002 and developed and managed by a multi-agency

consortium
• Used for coupling climate, weather, hydrological, biological, space weather,

and other components (including 3 dynamical cores in this workshop)
running on high performance computing platforms

• More than 60 ESMF components in the community
• Highly portable and scalable
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ESMF Earth Science Components &
Models

HAF

GAIM
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GEOS-5 

surface fvcore gravity_wave_drag 

history agcm 

dynamics physics 

chemistry moist_processes radiation turbulence 

infrared solar lake land_ice data_ocean land 

vegetation catchment 

coupler 

coupler coupler 

coupler 

coupler 

coupler 

coupler 

• Each box is an ESMF gridded component or coupler component
• ESMF State objects carry data between components
• Every component (including couplers) has a standard interface to facilitate exchanges
• The ESMF architecture enables the assembly of many different systems

ESMF Applicat ion Example

GEOS-5 Atmospheric
General Circulation Model
Application Example
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Interoperab ility and standard izat ion of
interfaces

• Standard component interfaces are the
basis for modularity and interoperability

• There are only three ESMF component
methods:  Initialize, Run, and Finalize
(I/R/F)

• Users assign their user code I/R/F
methods to an ESMF Component type,
thereby “finishing” the Component

• The ESMF Component calls back into
the specific user-assigned methods

• I/R/F methods cascade down the tree
• Small set of standard arguments:

Child GridComp “Atmosphere”

Parent GridComp “Hurricane Model”

Finalize

Child GridComp “Ocean”

Finalize

Child CplComp “Atm-Ocean Coupler”

Finalize

Call Initialize Call FinalizeCall Run

Initialize Run Finalize

Initialize

Initialize

Initialize

Run

Run

Run

AppDriver (“Main”)

Call Initialize Call FinalizeCall Run

    call ESMF_CompRun (myComp, importState, exportState, clock, phase, blockingFlag, rc)
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ESMF Adoption - PARSE
Prepare user code
• Decide on components, coupling fields and control flow and split user code into I/R/F methods
Adapt data structures
• Wrap user data structures either as

1 . ESMF Arrays – represent user data in index space
Regrid via user-supplied interpolation weights input to ESMF sparse matrix multiply

2 . ESMF Field objects – include coordinates and so represent user data in physical space
Regrid using ESMF parallel interpolation weight generation in v3.1.1

Pack Arrays or Fields into States.
Wrap time information in ESMF Clocks.

Register user methods
• Attach user code I/R/F methods to ESMF Components by calling registration methods
Schedule, synchronize, and send data between components
• Write couplers using ESMF redistribution, sparse matrix multiply, regridding, or user-specified

transformations
Execute the application
• Run components using an ESMF driver
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Release Path
2002        2003        2004        2005        2006        2007        2008        2009       2010

ESMF v1
Prototype

ESMF v2
Components, VM and Utils
ESMF_GridCompRun()

ESMF v3
Index Space Operations
ESMF_ArraySparseMatMul()

ESMF v4
Grid Operations
ESMF_GridCreate()
ESMF_FieldRegrid()

ESMFv5
Standardization
Build, init, data types, error handling, …

Public release
ESMF v3.1.0r
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Pub lic Release v3 .1 .0 r,  May 2 0 0 8

• Open source, open development, on-line browsable repository

• Serial (one processor) or parallel (many processors)

• Components can run concurrently (components run on mutually exclusive
processors), sequentially (all components run on the same processors) or in
mixed mode

• Single executable (all components run as one big program) or multiple
executable (components run as separate programs) or combinations

• Shared or distributed memory or hybrid

• Support for model ensembles, including execution of multiple ensemble
members in the same address space

• 2000+ unit tests, system tests, and examples regression tested nightly on 26+
platform/compiler combinations

• Exhaustive Reference Manual and Users Guide
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More on the current release …

• Data transformations can be executed within a coupler
component, or arranged in a coupler component and executed
directly between model components

• Coupling can be done in index space or physical space

• Performance:  < 5% overhead in time to solution vs customized
native approaches, highly scalable in performance and memory
(performance reports online)
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Upcom ing  Release
Internal Release 3.1.1, June/July 2008

• Representation of observational data streams

• Generation of regridding interpolation weights for logically

rectangular grids, bilinear and higher order methods

(conservative coming)

• Attribute class can store and write standard metadata packets

and represent metadata hierarchies - e.g., State metadata

includes the metadata of Fields that are stored in it

The last item connects ESMF to Curator, since it enables ESMF metadata

output to be input into a web portal that describes components, models,

and experiments – and it is also a first step to automating coupling
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How to Get Started &  Get Help

• Support list – esmf_support@ucar.edu

• Web meeting with the development team

• Code Examples webpage and FAQ

• Tutorials and Coding Workshops

• Reference Manual and Users Guide
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Parallel Rendezvous
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Example ESMF grids

ESMF computes a regridding operator from source to
destination grid:

With petascale applications and very large grids in mind, we com-

pute this operator in parallel.
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Example ESMF grids

ESMF also implements the regridding operator, which operates
on ESMF Array objects

to transfer field values to the destination grid, using a highly opti-

mized sparse matrix multiply kernel.
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Example ESMF grids

More generally, ESMF can build regridding operators for mesh
<-> mesh and mesh <-> grid interactions

These grids/meshes will not likely be geometrically aligned.
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Geometric Rendezvous

We construct a new partition for each mesh such that the
portions of each mesh on a given processor are geometrically
collocated!
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Geometric Rendezvous

We construct a new partition for each mesh such that the
portions of each mesh on a given processor are geometrically
collocated!

Also, the union of meshes is load balanced, so that the local
searches are optimal.

David Neckels, NCAR – p.4/13



Spherical Interpolation
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Global Interpolation

Global interpolation to and from spherical grids is ill defined as a
two dimensional problem, as it is usually solved.
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Global Interpolation

Global interpolation to and from spherical grids is ill defined as a
two dimensional problem, as it is usually solved.

Branch cuts in each grid complicate search algorithms.
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Global Interpolation

Global interpolation to and from spherical grids is ill defined as a
two dimensional problem, as it is usually solved.

Branch cuts in each grid complicate search algorithms.

The pole singularity is not handled correctly

David Neckels, NCAR – p.6/13



Generalization is 3D

The best generalization of the various representations of the
sphere?

David Neckels, NCAR – p.7/13



Generalization is 3D

The best generalization of the various representations of the
sphere?

We represent these grids a two dimensional manifold in 3-space.

David Neckels, NCAR – p.7/13



Pole/Extrapolation issues

We propose unique solutions to pole and extrapolation regrid
difficulties
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Pole/Extrapolation issues

We propose unique solutions to pole and extrapolation regrid
difficulties

Example, Holes at the pole (regular lat/lon and POP grids)
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Pole/Extrapolation issues

We propose unique solutions to pole and extrapolation regrid
difficulties

We triangulate the area and introduce a constrained degree of
freedom at the pole.

David Neckels, NCAR – p.8/13



Pole/Extrapolation issues...

Given this constrained degree of freedom, we form the
interpolation matrix M̃ in the usual way (e.g. bi-linear/tri-linear
interpolation).
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Pole/Extrapolation issues...
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Pole/Extrapolation issues...

Given this constrained degree of freedom, we form the
interpolation matrix M̃ in the usual way (e.g. bi-linear/tri-linear
interpolation).

We form the constraint matrix C, which describes how field
values at the pole (or other constrained nodes) are to be
manufactured from the true degrees of freedom.

We finally reduce out the constraints, forming the final
interpolation matrix M = M̃C.

This approach can also work on grid boundaries, where data
may not be available for all cell nodes; one only need provide a
suitable extrapolation constraint matrix, C.

David Neckels, NCAR – p.9/13



Patch Recovery Interpolation
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Patch based interpolation

ESMF provides higher order smoothing interpolation.

The Patch method uses local least squares fits to form a
smoothing interpolation operator.

This method is more convenient than bi-cubic, since derivatives
are not needed.

David Neckels, NCAR – p.11/13



Patch based interpolation...

Derivatives of the interpolant from coarse to fine scale grids are
greatly improved

David Neckels, NCAR – p.12/13



Patch based interpolation...

Analytic curl of a wind stress field on the fine grid
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Patch based interpolation...

Curl of a the bilinear interpolant of wind stress field on the fine
grid
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Patch based interpolation...

Curl of a the patch-recovery interpolant of wind stress field on
the fine grid

David Neckels, NCAR – p.12/13
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Outline

MAPL Intro / Development History
Relevant aspects of ESMF
Role of MAPL (as a middleware layer)
Core Elements of MAPL
Basic Recipe for a MAPL Component
The DynCore_GridComp example
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MAPL Introduction

Objectives
Establish standards and software tools for

building ESMF compliant Components
Facilitate the porting of existing codes to

ESMF
Provide tools and a clean recipe for

building ESMF components
Facilitate interoperability between ESMF

compliant components
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MAPL Introduction

Development History
Arose from the development of GEOS-5 at

NASA GMAO
Observed that the implementation of ESMF

components could be generalized and re-
used

Intended to be a generic layer to facilitate
building a hierarchical structure of ESMF
components for Earth System Models
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Relevant Aspects of ESMF

ESMF provides essential functions
required by parallel, scalable earth
system models in a machine
independent way

ESMF provides general programming
classes to construct ESMF components
(infrastructure) or connect components
to one another (superstructure)
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Relevant Aspects of ESMF

The simplest implementation

ESMF Superstructure
Initialize  Run  Finalize

User Code
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Relevant Aspects of ESMF

More advanced implementations

ESMF Superstructure
Initialize  Run  Finalize

User Code

ESMF Infrastructure
Fields Bundles Grids

ESMF Infrastructure Utilities
Coupling Communication I/O
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Hierarchical Structure
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MAPL Objectives
Specify conventions and best practices

for ESMF utilization in Climate/Weather
models

Serve as a middleware layer (between
user code and ESMF) to facilitate
adoption of ESMF in Climate/Weather
models
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Core Aspects of MAPL
 MAPL_Core

 Register Init/Run/Finalize Methods
 Provide Data Services

 MAPL_Connect
 Define data connections
 Manage connections among child components (coupling)
 Perform regridding as needed

 MAPL_History
 Manage output streams from a MAPL hierarchy
 Write any fields requested from the Export states
 Interpolate/average as requested

 MAPL_CFIO
 Read/write ESMF states/fields
 Self-describing (netcdf/HDF) and Flat Binary (GrADs)

 MAPL_Utils
 Profiling, error handling and astronomy
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 SetServices
 Allocate the MAPL object
 Registers component IRF methods
 Creates and allocates the IM/IN/EX states
 Define profiling timers
 Set children’s services

 Initialize
 Read configurations (parameters required for your run)
 Query the grid (modify for your component as needed)
 Initialize children

 Run
 Advance the component and it’s children

 Finalize
 Checkpoint IM/IN states as requested
 Clean up IM/IN/EX states

Core Elements of a MAPL
Component
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MAPL_Core
Provide tools for describing a components

import/export states
Internal State is added to extend the ESMF

state concept for persistent component data
Facilitate the use of ESMF Fields and thus of

the ESMF Infrastructure layer
call MAPL_AddImportSpec(STATE, &

SHORT_NAME = ’PLE’, &
LONG_NAME = ’air_pressure’, &
UNITS = ’Pa’, &
DIMS = MAPL_DimsHorzVert, &
VLOCATION = MAPL_VLocationEdge, &
RC=STATUS )
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MAPL_Core
Assist in constructing Init/Run/Finalize (IRF)

methods
Provide generic IRF routines for simple

components
    call MAPL_GridCompSetEntryPoint ( gc, ESMF_SETINIT,  Initialize, rc=status)
    VERIFY_(STATUS)
    call MAPL_GridCompSetEntryPoint ( gc, ESMF_SETRUN,   Run, rc=status)
    VERIFY_(STATUS)
    call MAPL_GridCompSetEntryPoint ( gc, ESMF_SETRUN,   RunAddIncs, rc=status)
    VERIFY_(STATUS)
    call MAPL_GridCompSetEntryPoint ( gc, ESMF_SETFINAL, Finalize, rc=status)
    VERIFY_(STATUS)
    call MAPL_GridCompSetEntryPoint ( gc, "ESMF_ReadRestart", Coldstart, rc=status)
    VERIFY_(STATUS)
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MAPL_Connect
Describes the connectivity between components

 call MAPL_AddConnectivity ( GC,                                &
         SHORT_NAME  = (/ 'DUDT', 'DVDT', 'DTDT' /),   &
         SRC_ID      =  PHS,                                           &
         DST_ID      =  DYN,                                          &
                                                            RC=STATUS  )
    VERIFY_(STATUS)

    call MAPL_AddConnectivity ( GC,                              &
         SRC_NAME = (/ 'U    ', 'V    ', 'T    ', 'PLE  ' /),          &
         DST_NAME = (/ 'U    ', 'V    ', 'TEMP ', 'PLE  ' /),    &
         SRC_ID   =  DYN,                                               &
         DST_ID   =  PHS,                                               &
                                                            RC=STATUS  )
    VERIFY_(STATUS)
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MAPL_Connect
Simplifies the creation of hierarchical

Components
Provides a single main program (the

MAPL_CAP component) with 2 children
(Root and History)

Automatically creates ESMF coupler
components

Provides support for regridding through
Exchange grids
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MAPL_History
An Internal MAPL Gridded Component
Configuration defined in HISTORY.rc

Defines collections of output streams
Specifies format (GrADS or CFIO)
Specifies “instantaneous” or “time-averaged” fields
Beginning and end times for each collection
Specifiy frequency of output collections
Describe requested time averaging
Request regridding (horizontal or vertical)
Request fields to be output
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MAPL_History
EXPID:  fvcubed
EPDSC: fvcubed_CASE-2-0-1234_high_L26

COLLECTIONS:
      ' fvcubed_CASE-2-0-1234_high_L26 '
      ::

fvcubed_CASE-2-0-1234_high_L26.template:   '%y4%m2%d2_%h2%n2z',
fvcubed_CASE-2-0-1234_high_L26.format:     'CFIO',
fvcubed_CASE-2-0-1234_high_L26.descr:      ’fvcubed_dycore'
fvcubed_CASE-2-0-1234_high_L26.frequency:  240000,
fvcubed_CASE-2-0-1234_high_L26.resolution: 720 361
fvcubed_CASE-2-0-1234_high_L26.fields:     'PHIS'     , 'DYNAMICS'          ,
                              'PS'       , 'DYNAMICS'          ,
                              'PL'       , 'DYNAMICS', 'P'     ,
                              'U'        , 'DYNAMICS'          ,
                              'V'        , 'DYNAMICS'          ,
                              'T'        , 'DYNAMICS'          ,
                              'TRACER_1' , 'DYNAMICS', 'Q1'    ,
                              'TRACER_2' , 'DYNAMICS', 'Q2'    ,
                              'TRACER_3' , 'DYNAMICS', 'Q3'    ,
                              'TRACER_4' , 'DYNAMICS', 'Q4'    ,
                              'TRACER_5' , 'DYNAMICS', 'Q5'    ,
                              'TRACER_6' , 'DYNAMICS', 'Q6'    ,
                      ::



Bill Putman : SIVO - NASA GSFC

MAPL_CFIO
Interfaces CFIO to the ESMF data types
Designed for two modes of I/O

Self-Describing (netcdf or HDF)
Flat Binary (GrADs readable)

Contains only four methods
MAPL_CFIOCreate
MAPL_CFIOWrite
MAPL_CFIORead
MAPL_CFIODestroy

Can automatically create ESMF arrays on Read
Independent of all other aspects of MAPL
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MAPL_Utils
 Error Handling

 Profiling

 Astronomy
 MAPL_SunOrbit, MAPL_SunGetInsolation
 Configuration defines orbital parameters

Eccentricity, Perihelion, Obliquity, Equinox

 Universal Constants
 PI, Grav, Radius, Omega, Rgas, Kappa …

VERIFY_(STATUS)
RETURN_(ESMF_Success|ESMF_Failure)
ASSERT_(logical expr)

MAPL_TimerAdd(MAPL, NAME, RC)
MAPL_TimerOn (MAPL, NAME, RC)
MAPL_TimerOff(MAPL, NAME, RC)
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Basic Recipe for a MAPL
Component

Write a SetServices that:
Describes the three State’s contents
Registers any custom IRF methods with MAPL
Registers its children with MAPL
Explicitly describes connections between children
Calls Generic_SetServices

Write your custom IRF methods
calling the generic versions from within each
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The DynCore_GridComp
Example

CAP

GEOS_AgcmSimple_GridComp

DynCore_GridComp_

GEOS_HSGridComp

MAPL_HISTORY

fv_dycore

fvcubed_dycore

bq_dycore



Bill Putman : SIVO - NASA GSFC

The DynCore_GridComp
Example

 Receives the ESMF Grid defined in the CAP
 Cubed-sphere (IMx6*JM) or lat-lon (IMxJM)

 Import State
 DUDT, DVDT, DTDT, DPEDT, PHIS, QTR

 Internal State
 U, V, PT, PE, PKZ

 Export State
 Tendencies, Vorticity, Omega, SLP, Heights, Mass Fluxes

and many more…
 Registered Methods

 Init, Run, RunAddIncs, Finalize, Coldstart
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The DynCore_GridComp
Example

 Read Restarts during SetServices
 From File if provided
 Coldstart routine (if restarts not available)

For colloquium we use Coldstart to interface with testcase
initializations

Configuration files are processed to determine testcase

 Provides basic Initialize Run and Finalize methods
 These interface with an F90 module defined to tie the

ESMF/MAPL layer to the user code
 Can run adiabatically (dycore only), or connected to simple

forcings (Held Suarez), or full GEOS physics components
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The DynCore_GridComp
Example

#if defined(USE_FVcubed)
! FV Specific Module
   use FV_StateMod, only : DynTracers      => T_TRACERS,        &
                             DynVars         => T_FVDYCORE_VARS,  &
                             DynGrid         => T_FVDYCORE_GRID,  &
                             DynState        => T_FVDYCORE_STATE, &
                            DynInit         => FV_InitState,     &
                            DynRun          => FV_Run,           &
                             DynFinalize     => FV_Finalize,      &
                             getAgridWinds   => fv_getAgridWinds, &
                             getOmega        => fv_getOmega,      &
                             getPK           => fv_getPK,         &
                             getVorticity    => fv_getVorticity,  &
                             Agrid_To_Native => a2d3d
#endif
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More about MAPL

MAPL wiki

http://www.maplcode.org/
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