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Motivation: Parallel Scalability

@ Why not use latitude-longitude Grids? Well proven. Many good solutions
to the “pole problem”, but they degrade parallel scalability

@ “petascale” ready models needed for next generation computers
@ Grids which do not cluster grid points have excellent scalability:

@ Cubed-sphere grids: CAM/HOMME at 25km (0.25 degree) scales to
86,400 cpus

@ lcosahedral grids: Run on the JES at ~ 2km global resolution



Focus on quadrilateral grids

» A lot of numerical methods have been developed for Cartesian
grids. What is the easiest way to transfer these methods to the
sphere?

# Scalability requires unstructured or less-structured grids — using
quads allows us to use some of the techniques developed for
Cartesian grid methods.

@ Dealing with spherical geometry and parallel scalability is why we
are here. If compute time was not an issue, lat/lon Cartesian
methods would be very difficult to beat.

@ Focus on 2D discretizations of the surface of the sphere. Vertical
direction can and often is treated with a completely different
method



Types of quadrilateral grids

» Composite grid methods
— Cover the sphere with patches of orthogonal Cartesian grids
— Grids must overlap for stability

— Interpolations between the grids make conservation quite
difficult

— Popular in generic AMR PDE solver “packages”
@ Pure Quad Grids: conformal

— Can use orthogonal Cartesian grid methods

— Non-uniform grids - Introduces new pole-like problems
@ Pure Quad Grids: non-conformal

— Equal angle projection — very uniform grid

— Requires a numerical method that can handle non-orthogonal
unstructured grids.



The Cubed-Sphere

F1GURE 1.—A cubic representation of the earth. A cubic grid is
shown together with the corresponding spherical grid which fits
into the cubic splitting of the sphere, in the exact disposition that
was used in the actual computations.

Source: Sadourny, MWR 1972



Sadourny MWR 1972

2 Used the Gnomonic projection (non-orthogonal)

2 Finite difference method (mass & energy conserving)

» One sided differences used at cube face boundaries

2 Large truncation error at the boundary resulting in noisy solutions

2 Similar approach used by Phillips MWR 19359 (two stereographic
polar caps + Mercator projection tropical band) with “missing”
values for FD stencils obtained by interpolation

Unfortunately, the decision to butt the coordinate systems
together at a common latitude and to couple them with
interpolation led to an unstable method, so the concept was
abandoned.

Browning, Hack, Swarztrauber MWR 1989.



The Composite Mesh Method

—

]

—

FI1G. 1. The two tangent planes used in the composite-mesh method.
Both planes extead slightly beyond the equator and contain a Carte-
sian coordinate system centered at the tangent point.

Source: Browning, Hack, Swarztrauber MWR 1989.
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The Composite Mesh Method

» Stereographic (or other orthogonal) projections used so each
patch maps to a regular Cartesian grid

» Boundary points from one grid (using one coordinate system) are
interior points from another grid (using a different coordinate
system)

» The overlapping of all boundary points is the key to the stability of
the method (Starius, Numer. Math. 1977,1980)

...there is an overlapping of the grids in the middle latitudes, and
one needs to interpolate values from one grid to its neighbor in the
course of the calculation. This need makes the design of a global
conservative scheme impossible in practice.

Sadourny, MWR 1972



The Composite Mesh Method
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FIG. 4. View of two contiguous equatorial blocks and two of their
stencils. The view is centered on the common vertical boundary line and
shows the case of two grids with N, = N, and Ng = 2. Notice that in
this case, since both blocks use the same grid spacing, the horizontal
coordinates of the stencil points of one grid coincide with the horizontal
coordinates of the last two interior grid points of the contiguous block.

Ronchi, lacono, Paulucci, JCP 1996



The Composite Mesh Method

» Ronchi, lacono, Paulucci JCP 1996
» First use of the phrase “cubed-sphere”?
» 4™ order, fully co-located A-grid like method



The Composite Mesh Method
Yin-Yang Grid

Source: R.J. Purser (NCEP) The bi-Mercator Grid as a Global Framework for
Numerical Weather Prediction

Kageyama, Sato, Geochem. Geophs. Geosyst. 2003



Non-overlapping Quadrilateral Grids



Euler's Formula for polyhedra: V-E +F =2

V = number of verticies
E = number of edges

®
F = number of faces
Quadrilateral elements:
E = 4F/2 V3 V4 V5 .....
2E=5j Vj

Then: V, = 8 + V,  + 2V _+ 3V_..

most uniform solution:
V3 = 8, V4=un|imited, V5=V6=...=O

For non-overlapping quadrilateral grids,

The cubed sphere is the only reasonable
choice!
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Conformal Cubed-Sphere Grids

Rancic, Purser, Mesinger QJRMS 1996

McGregor Atmos. Ocean 1996



Conformal Cubed-Sphere Grids

STEREOQOGRAPHIC
IMAGE OF TARGET

AX1S OF STEREQGRAPHIC

GEOGRAPHICAL / PROJECTION USED TO

TARGET CONFORMALLY TRANSFORM

POINTS IN SHADED OCTANT
ONTO THE PLANE NORMAL
TO THIS AXIS

STEREQGRAPHIC
PLANE NORMAL TO
PROJECTION AXIS

FOCAL POINT FOR
STEREOGRAPHIC PROJECTION

Figure A.1. Schematic depiction of the construction of the image on a plane of a target on the sphere. The image

plane for any target is parallel to the sphere’s surface at the point corresponding to the nearest corner of the inscribed

cube. Therefore, the points on the sphere that share a common stereographic projection comprise an octant (shaded
region).

Rancic, Purser, Mesinger QJRMS 1996
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Conformal Cubed-Sphere Grids

Rancic, Purser, Mesinger QJRMS 1996

Sample cubed-sphere output from



Conformal Cubed-Sphere Grids

» Orthogonal grid — can use your favorite Cartesian grid
method (but need to be careful at the 8 corner points)

» Used by several modeling groups including two that are
here at this seminar (MIT and GEF )

» But at higher resolutions you are faced by a pole-like
CFL problem caused by the clustering of the grid at the 8
corner points



Cubed-sphere
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Source: J. McGregor (CSIRO) Some features of the dynamical formulation of CCAM,
PDEs on the sphere, 2006



Equal Angle Cubed-Sphere Grids

Non-orthogonal coordinate system

» Coordinate lines do not extend continuously géress/ct
faces. Have to use numerical methods desiqgr
unstructured grids.

@ Directionally split techniques no longer work
» However:

— Equal angle spacing for quasi-uniform resolution.
Coordinate lines are arcs of great circles

— Used by two groups at this seminar (CAM/HOMME and
NASA FVcubed)

Taylor, Tribbia, Iskandarani, JCP 1997



Numerical Methods for non-orthogonal
unstructured grids

» Flux based: finite volume, discontinuous
Galerkin

» Continuous Galerkin (finite element, spectral :
finite element)

» Mimetic
» Others?




Flux based Methods: Mass Conservation

Start with advection equation in conservation form
h
Integrate over a small control volume:
Oh
_t—l_ f V ( h u) —
Q
Apply divergence theorem:

—h-|—43 hu-n=0

Approximate Flux on cell edges:

h,, =h+F+G

t+1




Flux based methods: Energy Conservation?

» FVV methods on quad grids: typically can not conserve
energy in a climate model: would need to advect total
energy instead of temperature

» \Why not advect total energy?



Conservation in Finite Element Methods

» Finite element method solves an integral form of the
equations

» Approximates the function space that the solution lives in —
then computes derivatives exactly (as opposed to
approximating the derivative operators)

2 Finite element methods can be made compatible
» Compatible methods can conserve both mass and energy

Example from the ASP seminar of compatible methods:
CAM/HOMME and CAM/EUL



Shallow Water Equations
2D Flow on the surface of the sphere

2—;’+(w—|—f)l€><u—l—V(é—u2—l—gH)=O
oh
Y +V-(hu)=0

u = velocity field

w = vorticity

h = atmosphere thickness

H = atmospheric height h + h



Shallow Water Equations
Weak Formulation

y,0€H,  uhel,

Solve system of scalar integral equations for all test functions

w,PpEH, u,heH,

With the usual area weighted integral over the surface of the sphere:

f H Jrcos(0)dod A



Spectral Finite Element Discretization

 Tile the sphere with elements
2 H1d = set of all C?functions which are polynomials up

to degree d within the elements.
» Construct test/basis functions for H 1dwhich have

compact support over few elements

span (¢, |=H|

» Solve finite set of scalar integral

equations exactly




Compatible Numerical Methods

Discrete operators and discrete integral satisfy continuum properties:

[ V(pv)=| pV-v+|v-V p=0
fv'(uxv)va-VXu—fu.VXv:()
V XV p=0
V-VXu=0

2 Integration by parts insures conservation

 Curl Grad = 0 can improve vorticity evolution

» Many schemes have this property on orthogonal Cartesian grids
» Difficult to preserve on unstructured grids

» Spectral Element Method is Compatible on very general unstructured
grids.



Global Conservation: Mass

Integrate advection equation over the entire sphere:

I%Jrf V-(hu)=0

Apply divergence theorem: Z’_ f h=0
[

A numerical scheme will conserve global mass if its discrete approximation
to the integral and divergence operator used for advection satisfy:

fV-(v)zO



Global Conservation: Tracer Mass

Advection equation in non-conservation form:

0q
5 T Vq=0

oh B
¥ —+V - (hu)=0

Multiply and Integrate over the sphere:

fh L [ hu-V g=0
fq —|—qu hu)=

AM$=th



Global Conservation: Tracer Mass

Sum:

%f qh+f hu-Vq+f qgV-(hu)=0

A numerical scheme will conserve global tracer mass if the discrete
div and grad operators used for advection are adjoints in the inner product
defined by the discrete approximation to the integral. (integration by parts)

[ pVv=—[v-Vp

By taking p=1, we also have: f V'(V)ZO



Energy Conservation

*Dry Primitive Equations
*Sigma coordinates in the vertical
*Show conservation in the unforced, inviscid equations

szps dA
1
KEzéffpsu-u dAd o
0
1
IEszffpST dAd o
0

Surface integral over the unit sphere:

[OaA=[ ()cos(0)dodA



Energy Conservation: KE

ou ou
(F—F(w—l—f)qu—l—V(zu —|—§b) D VPS O'%—O
0P 0

o1 +v<psu)+a_0_<psa-):()

Multiply and Integrate over the sphere:

%KEzﬂ RT u-Vszrﬂ puVae

= || RTu-V p+ || V-(p,u) fgdo—

O

o



Energy Conservation: IE

8—T+u-VT—I—('ra—T—RTw =()
Ot oo C,p

ap 0
~+V- +—(p,0)=0

Multiply and Integrate over the sphere:



Total Energy Conservation
Such a numerical method then satisfies a discrete version of:

Z—IKEz—ﬂ RTu-VpSJrﬂ V-p,u) Eda

o

Z—tlEsz RTu-Vps—ﬂ iif Vp.u)do

» Notes:
— Momentum advection exactly preserves KE
— Temperature advection exactly preserves |IE
— Mass advection exactly preserves mass
— KE <-> PE transfer terms exactly balance



Total Energy Conservation: Requirements

» Conservative vertical coordinate system (Simmons and Burridge,
or Lagrangian)

— Carefully constructed hydrostatic equation and matching
equations for do/dt

— Vertical derivative operator can be integrated by parts
@ Horizontal discretization:
— div/grad operators used in equations can be integrated by parts

[pVv dA=—[v-Vp dA

1

f qda——fq dO‘ +  b.c. terms

0



SUMMARY
Quadrilateral Grids on the Sphere:

» Composite grid methods
— Use your favorite orthogonal Cartesian grid methods
— Interpolations make it difficult to maintain conservation
@ Pure Quad Grids: conformal

— Can use orthogonal Cartesian grid methods (some care needed
at 8 corner points)

— Non-uniform grids - Introduces new pole-like problem
@ Pure Quad Grids: non-conformal
— Equal angle projection — very uniform grid

— Requires a numerical methods designed for non-orthogonal
unstructured grids.



