AOSS 321, Winter 2009 Earth System Dynamics

Lecture 4 1/20/2009

Christiane Jablonowski cjablono@umich.edu

734-763-6238

Eric Hetland

ehetland@umich.edu

734-615-3177

Today's lecture

We will discuss

- Divergence / Curl / Laplace operator
- Spherical coordinates
- Vorticity / relative vorticity
- Divergence of the wind field
- Taylor expansion

Divergence (Cartesian coordinates)

Resulting scalar quantity, use of partial derivatives

Curl (Cartesian coordinates)

Resulting vector quantity, use of partial derivatives

Laplace operator (Cartesian coordinates)

The Laplacian is the divergence of a gradient

Resulting scalar quantity, use of second-order partial derivatives

Spherical coordinates

• Longitude (E-W) defined from $[0, 2\pi]$: λ

• Lautude (N-S), defined from $[-\pi/2, \pi/2]$: ϕ

Height (vertical, radial outward):

Spherical velocity components

Spherical velocity components:

- r is the distance to the center of the earth, which is related to z by r = a + z
- a is the radius of the earth (a=6371 km), z is the distance from the Earth's surface

Unit vectors in spherical coordinates

Unit rectors in longitudinal, latitudinal and vertical direction:

- Unit vectors in the spherical coordinate system depend on the location (λ, φ)
- As in the Cartesian system: They are orthogonal and normalized

Velocity vector in spherical coordinates

• Use the unit vectors to write down a vector in sperical coordinates, e.g. the velocity vector

- In a rotating system (Earth) the position of a point (and therefore the unit vectors) depend on time
- The Earth rotates as a solid body with the Earth's angular speed of rotation Ω = 7.292 × 10⁻⁵ s⁻¹

• Leads to

Time derivative of the spherical velocity vector

- The picture can't be displayed.
- Spherical unit vectors | X | depend on time

 This means that a time derivative of the velocity vector in spherical coordinates is more complicated in comparison to the Cartesian system:

Spherical coordinates λ , ϕ , r

 Treformations from spherical coordinates to Cartesian coordinates:

Consider the divergence of the wind vector

- The divergence is a scalar quantity
- If _____ (positive), we call it divergence
- If \times\ (negative), we call it convergence
- If _____ the flow is nondivergent
- Very important in atmospheric dynamics

Divergence of the wind field (2D)

Consider the divergence of the horizontal wind Vector The picture can't be displayed. The divergence is a scalar quantity (positive), we call it divergence (negative), we call it convergence the flow is **nondivergent**

Unit 3, frame 17: http://www.atmos.washington.edu/2005Q1/101/CD/MAIN3.swf

Very important in atmospheric dynamics

Relative vorticity

Great web page: http://my.Meteoblue.Com/my/

Real weather situations 500 hPa rel. vorticity and mean SLP

sea level pressure

Positive rel.
vorticity,
counterclockwise rotation,
in NH: low
pressure
system

Divergent / convergent flow field

Compute the relative vorticity

Rotational flow fields

Compute the rel vorticity of the wind vector

Compute the divergence

Draw the flow field (wind vectors)

Taylor series expansion

• It is sometimes convenient to estimate the value of a continuous function f(x) about a point $x = x_0$ with a power series of the form:

In the last approximation, we neglected the higher order terms