Atmospheric Dynamics Modeling Group /
Publications and Selected Presentations

Refereed Books and Book Chapters

Numerical Techniques for Global Atmospheric Models

Lauritzen, P. H., C. Jablonowski, M. A. Taylor and R. D. Nair (Eds.) (2011), Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, Springer, Vol. 80, 556 pp.

Jablonowski, C. and D. L. Williamson (2011), The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models, In: Lauritzen, P. H., C. Jablonowski, M. A. Taylor, R. D. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, Springer, Vol. 80, 381-493, download the chapter in pdf format(3.8 MB)

Lauritzen, P. H., P. A. Ullrich and R. D. Nair (2011), Atmospheric transport schemes: Desirable properties and a semi-Lagrangian view on finite-volume discretizations, In: Lauritzen, P. H., C. Jablonowski, M. A. Taylor, R. D. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, Springer, Vol. 80, 185-250

Num. Tech. book cover

This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.

Seamless Prediction of the Earth System: from Minutes to Months

Cote, J., C. Jablonowski, P. Bauer and N. Wedi (2015), Numerical Methods of the Atmosphere and Ocean, in: Brunet, G., S Jones and P. M. Ruti (Eds.), Seamless Prediction of the Earth System: from Minutes to Months, World Meteorological Organization (WMO) No. 1156, Geneva. pp. 101-124

We are entering a new era in technological innovation and in use and integration of different sources of information for improving well-being and the ability to cope with multi-hazards. New predictive tools able to detail weather conditions to neighbourhood level, to provide early warnings a month ahead, and to forecast weather-related impacts such as flooding and energy consumption will be the main outcomes of the next ten years research activities in weather science. A better understanding of small-scale processes and their inherent predictability should go together with a better comprehension of how weather- related information influences decisional processes and with better strategies for communicating this information. Within this perspective, this book is intended to be a valuable resource for anyone dealing with environmental prediction matters, providing new perspectives for planning and guiding future research programmes.


The DCMIP Test Case Suites: 2008, 2012 and 2016


Online Archive

  • Limon, G. and C. Jablonowski (2022), Probing the Skill of Random Forest Emulators for Physical Parameterizations via a Hierarchy of Simple CAM6 Configurations, Earth and Space Science Open Archive (ESSOAr), doi:10.1002/essoar.10512353.1
  • Limon, G. and C. Jablonowski (2019), An Assessment of Machine Learning Techniques for Replicating Physical Forcing Mechanisms in Climate Models, American Geophysical Union (AGU) Fall Meeting, Abstract A41R-2898, San Francisco, CA, USA, Dec. 9-13, 2019, available in the online archive: Earth and Space Science Open Archive, doi: 10.1002/essoar.10501799.1

Publication Highlights

Our Lauritzen et al. (2022) and Lojko et al (2022) papers were featured as Editor’s Highlights in September 2022 and February 2023. Read about the highlights in EOS:
https://eos.org/editor-highlights/consistently-closing-the-energy-budget-in-earth-system-models
https://eos.org/editor-highlights/mesoscale-convective-systems-impact-synoptic-wave-forecast
Fewer than 2% of the papers are selected to be featured in this way.

Our Lauritzen et al. (2022) article ‘Reconciling and Improving Formulations for Thermodynamics and Conservation Principles in Earth System Models (ESMs)’ won the UCAR Outstanding Accomplishment Award in Publication in Nov. 2023. The citation is:

Current ESMs contain many approximations and assumptions in their treatment of energy budgets, leading to non-negligible errors. This highly-collaborative, interdisciplinary effort carefully identifies many existing ESM energy budget errors and proposes a roadmap for future improvements.
The publication is encyclopedic in nature, spanning 83 pages and containing more than 160 equations. Yet, it is remarkably clear and highly readable, a rare quality for a paper on such a complex subject. Eos.org featured it as an Editor’s Highlight in September 2022, a standing awarded to less than two percent of its articles.
As ESMs are being applied to additional challenges such as seasonal prediction and convection-resolving scales, energetic and thermodynamic consistency is more important than ever. This work will serve as a reference for the global community of climate modelers and will be read for many years to come.


Peer-Reviewed Journal Articles by our Group Members

  • Hollowed, J. P., C. Jablonowski, H. Y. Brown, B. R. Hillman, D. L. Bull, and J. L. Hart (2024), Localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model, EGUsphere, egusphere-2024-335, in review
  • Lojko, A., A. C. Winters, A. Oertel, C. Jablonowski, and A. Payne (2024), An ERA5 Climatology of Synoptic-Scale Negative Potential Vorticity-Jet Interactions over the Western North Atlantic, EGUsphere, https://doi.org/10.5194/egusphere-2024-382, in review
  • Chen, A., and C. Jablonowski (2024), Fast Summation on the Sphere with Applications to the Barotropic Vorticity Equation, J. Comput. Phys., https://arxiv.org/abs/2401.07361, in review
  • Willson, J. L., K. A. Reed, C. Jablonowski, J. Kent, P. H. Lauritzen, R. Nair, M. A. Taylor, P. A. Ullrich, C. M. Zarzycki, D. M. Hall, D. Dazlich, R. Heikes, C. Konor, D. Randall, T. Dubos, Y. Meurdesoif, X. Chen, L. Harris, C. Kühnlein, V. Lee, A. Qaddouri, C. Girard, M. Giorgetta, D. Reinert, H. Miura, T. Ohno, and R. Yoshida (2023), DCMIP2016: The tropical cyclone test case, Geosci. Model Dev. Discuss.,  https://gmd.copernicus.org/preprints/gmd-2023-87, in press
  • Hughes, O. K. and C. Jablonowski (2023), A Mountain-Induced Moist Baroclinic Wave Test Case for the Dynamical Cores of Atmospheric General Circulation Models, Geosci. Model Dev., 16, 6805–6831, https://gmd.copernicus.org/articles/16/6805/2023/
  • Tang, Q., Golaz, J.-C., Van Roekel, L. P., Taylor, M. A., Lin, W., Hillman, B. R., Ullrich, P. A., Bradley, A. M., Guba, O., Wolfe, J. D., Zhou, T., Zhang, K., Zheng, X., Zhang, Y., Zhang, M., Wu, M., Wang, H., Tao, C., Singh, B., Rhoades, A. M., Qin, Y., Li, H.-Y., Feng, Y., Zhang, Y., Zhang, C., Zender, C. S., Xie, S., Roesler, E. L., Roberts, A. F., Mametjanov, A., Maltrud, M. E., Keen, N. D., Jacob, R. L., Jablonowski, C., Hughes, O. K., Forsyth, R. M., Di Vittorio, A. V., Caldwell, P. M., Bisht, G., McCoy, R. B., Leung, L. R., and Bader, D. C. (2023): The Fully Coupled Regionally Refined Model of E3SM Version 2: Overview of the Atmosphere, Land, and River, Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023
  • Limon, G. and C. Jablonowski (2023), Probing the Skill of Random Forest Emulators for Physical Parameterizations via a Hierarchy of Simple CAM6 Configurations, J. Adv. Model. Earth Syst., 15, e2022MS003395, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022MS003395?af=R
  • Lojko, A., A. Payne, and C. Jablonowski (2022), The Remote Role of North-American Mesoscale Convective Systems on the Forecast of a Rossby Wave Packet: A Multi-Model Ensemble Case-study, Journal of Geophysical Research: Atmospheres, 127, e2022JD037171. https://doi.org/10.1029/2022JD037171
  • Lauritzen, P.  H., N. Kevlahan, T. Toniazzo, C. Eldred, T. Dubos, A. Gassmann, V. E. Larson, C. Jablonowski, O. Guba, B. Shipway, B. E. Harrop, F. Lemarie, R. Tailleux, A. R. Herrington, W. G. Large, P. J. Rasch, A. S. Donahue, H. Wan, and A. J. Conley (2022), Reconciling and improving formulations for thermodynamics and conservation principles in Earth System Models (ESMs), J. Adv. Model. Earth Syst., 14, e2022MS003117, https://doi.org/10.1029/2022MS003117
  • Liu, L., S. Davedu, A. Fujisaki-Manome, H. Hu, C. Jablonowski, and P. Y. Chu (2022), Machine Learning Model-Based Ice Cover Forecasting for Vital Waterway in Large Lakes, Journal of Marine Science and Engineering, 10(8), 1022, https://doi.org/10.3390/jmse10081022
  • Fujisaki-Manome, A., D. M. Wright, G. E. Mann, E. J. Anderson, P. Chu, C. Jablonowski, S. G. Benjamin (2022), Forecasting Lake/Sea-Effect Snowstorms, Advancement, and Challenges, Wiley Interdisciplinary Reviews (WIREs), e1594, https://doi.org/10.1002/wat2.1594
  • Toniazzo, T., M. Bentsen, C. Craig, B. Eaton, J. Edwards, S. Goldhaber, C. Jablonowski, and P. Lauritzen (2020), Enforcing conservation of axial angular momentum in the atmospheric general circulation model CAM6, Geosci. Model Dev., Vol. 13, 685-705
  • Ferguson, J. O., C. Jablonowski and H. Johansen (2019), Assessing Adaptive Mesh Refinement (AMR) in a Forced Shallow-Water Model with Moisture, Mon. Wea. Rev., Vol. 147, 3673–3692, https://doi.org/10.1175/MWR-D-18-0392.1
  • Zarzycki, C. M., C. Jablonowski, J. Kent, P. H. Lauritzen, R. Nair, K. A. Reed, P. A. Ullrich, D. M. Hall, D. Dazlich, R. Heikes, C. Konor, D. Randall, X. Chen, L. Harris, M. Giorgetta, D. Reinert, C. Kühnlein, R. Walko, V. Lee, A. Qaddouri, M. Tanguay, H. Miura, T. Ohno, R. Yoshida, S.-H. Park, J. Klemp, and W. Skamarock (2019), DCMIP2016: The Splitting Supercell Test Case, Geosci. Model Dev., Vol. 12, 879–892
  • Gross, M., H. Wan, P. J. Rasch, P. M. Caldwell, D. L. Williamson, D. Klocke, C. Jablonowski, D. R. Thatcher, N. Wood, M. Cullen, B. Beare, M. Willett, F. Lemarie, E. Blayo, S. Malardel, P. Termonia, P. Bechtold, A. Gassmann, P. H. Lauritzen, H. Johansen, C. M. Zarzycki, K. Sakaguchi and R. Leung (2018), Physics–Dynamics Coupling in weather, climate and Earth system models: Challenges and recent progress , Mon. Wea. Rev., Vol. 146, 3505-3544
  • Ullrich, P. A. C. Jablonowski, J. Kent, P. H. Lauritzen, R. Nair, K. A. Reed, C. M. Zarzycki, D. M. Hall, D. Dazlich, R. Heikes, C. Konor, D. Randall, T. Dubos, Y. Meurdesoif, X. Chen, L. Harris, C. Kühnlein, V. Lee, A. Qaddouri, C. Girard, M. Giorgetta, D. Reinert, J. Klemp, S.-H. Park, W. Skamarock, H. Miura, T. Ohno, R. Yoshida, R. Walko, A. Reinecke and K. Viner (2017), DMIP2016: A Review of Non-hydrostatic Dynamical Core Design and Intercomparison of Participating Models Geosci. Model Dev., Vol. 10, 4477–4509, doi:10.5194/gmd-10-4477-2017
  • Bosler, P. A., J. Kent, R. Krasny and C. Jablonowski (2017), A Lagrangian Particle Method with Remeshing for Tracer Transport on the Sphere, J. Comput. Phys., Vol. 340, 639-654
  • Zarzycki, C. M., D. R. Thatcher and C. Jablonowski (2017), Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data, J. Adv. Model. Earth Syst., Vol. 9, 130–148, doi:10.1002/2016MS000775
  • Ferguson, J. O., C. Jablonowski, H. Johansen, P. McCorquodale, P. Colella and P. A. Ullrich (2016), Analyzing the Adaptive Mesh Refinement (AMR) characteristics of a high-order 2D cubed-sphere shallow-water model, Mon. Wea. Rev., Vol. 144, 4641-4666, doi:10.1175/MWR-D-16-0197.1
  • Yao, W. and C. Jablonowski (2016), The Impact of GCM Dynamical Cores on Idealized Sudden Stratospheric Warmings and their QBO Interactions, J. Atmos. Sci., Vol. 73, 3397-3421, doi:10.1175/JAS-D-15-0242.1
  • Hall, D. M., P. A. Ullrich, K. A. Reed, C. Jablonowski, R. D. Nair and H. M. Tufo (2016), Dynamical Core Model Intercomparison Project (DCMIP) Tracer Transport Test Results for CAM-SE, Quart. J. Roy. Meteorol. Soc., Vol. 142, 1672-1684, doi:10.1002/qj.2761
  • Thatcher, D. R. and C. Jablonowski (2016), A moist aquaplanet variant of the Held-Suarez test for atmospheric model dynamical cores, Geosci. Model Dev., Vol. 9, 1263-1292
  • Kent, J., C. Jablonowski, J. Thuburn and N. Wood (2016), An Energy Conserving Restoration Scheme for the Shallow Water Equations, Quart. J. Roy. Meteorol. Soc., Quart. J. Roy. Meteorol. Soc., Vol. 142, 1100-1110
  • Gross, M., S. Malardel, C. Jablonowski and N. Wood (2016), Bridging the (Knowledge) Gap between Physics and Dynamics, Bull. Amer. Meteorol. Soc., Vol. 97, 137-142, doi:10.1175/BAMS-D-15-00103.1
  •  Ullrich, P. A., K. A. Reed and C. Jablonowski (2015), Analytical initial conditions and an analysis of baroclinic instability waves in f- and beta-plane 3D channel models, Quart. J. Roy. Meteorol. Soc., Vol. 141, 2972-2988
  •  Holdaway, D. and J. Kent (2015), Assessing the tangent linear behaviour of common tracer transport schemes and their use in a linearised atmospheric general circulation model, Tellus A, Vol. 67, 27895, http://dx.doi.org/10.3402/tellusa.v67.27895
  •  Thatcher, D. R. and C. Jablonowski (2015), A moist aquaplanet variant of the Held-Suarez test for atmospheric model dynamical cores, Geosci. Model Dev. Discuss., Vol. 8, 8263-8340, doi:10.5194/gmdd-8-8263-2015
  •  Zarzycki, C. M. and C. Jablonowski (2015), Experimental Tropical Cyclone Forecasts using a Variable-Resolution Global Model, Mon, Wea. Rev., Vol. 143, 4012-4037
  •  Walsh, K. J. E., S. J. Camargo, G. A. Vecchi, A. S. Daloz, J. Elsner, K. Emanuel, M. Horn, Y.-K. Lim, M. Roberts, C. Patricola, E. Scoccimarro, A. H. Sobe l, S. Strazzo, G. Villarini, M. Wehner, M. Zhao, J. Kossin, T. LaRow, K. Oouchi, S. Schubert, H. Wang, J. Bacmeister, P. Chang, F. Chauvin, C. Jablonowski, A. Kumar, H. Murakami, T. Ose, K. A. Reed, R. Saravanan, Y. Yamada, C. M. Zarzycki, P. L. Vidale, J. A. Jonas and N. Henderson (2015), Hurricanes and climate: the U.S. CLIVAR working group on hurricanes, Bull. Amer. Meteorol. Soc, Vol. 96, 997-1017, doi:10.1175/BAMS-D-13-00242.1
  •  Yao, W. and C. Jablonowski (2015), Idealized Quasi-Biennial Oscillations in an Ensemble of Dry GCM Dynamical Cores, J. Atmos. Sci., Vol. 72, 2201-2226
  •  Wan, H., P. J. Rasch, M. A. Taylor and C. Jablonowski (2015), Short-term time step convergence in a climate model, J. Adv. Model. Earth Syst., Vol. 7, 215-225, doi:10.1002/2014MS000368
  •  He, F., D. J. Posselt, C. M. Zarzycki and C. Jablonowski (2015), A Balanced Tropical Cyclone Test Case for AGCMs with Background Vertical Wind Shear, Mon. Wea. Rev., Vol. 143, 1762-1781
  •  Whitehead, J. P., C. Jablonowski, J. Kent and R. B. Rood (2015), Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes, Quart. J. Roy. Meteorol. Soc., Vol. 141, 739-751
  •  Zarzycki, C. M., C. Jablonowski, D. R. Thatcher and M. A. Taylor (2015), Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model, J. Climate, Vol. 28, 2777-2803
  •  Wehner, M. F., K. A. Reed, F. Li, Prabhat, J. Bacmeister, C.-T. Chen, C. Paciorek, P. J. Gleckler, K. R. Sperber, W. D. Collins, A. Gettelman and C. Jablonowski (2014), The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth Syst., Vol. 6, 980-997
  •  Zarzycki, C. M. and C. Jablonowski (2014), A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation, J. Adv. Model. Earth Syst., Vol. 6, 805-828, AGU Newsletter Highlight (11/6/2014)
  •  Kent, J., C. Jablonowski, J. P. Whitehead and R. B. Rood (2014), Determining the Effective Resolution of Advection Schemes. Part II: Numerical Testing, J. Comput. Phys., Vol. 278, 497-508
  •  Kent, J., J. P. Whitehead, C. Jablonowski and R. B. Rood (2014), Determining the Effective Resolution of Advection Schemes. Part I: Dispersion Analysis, J. Comput. Phys., Vol. 278, 485-496
  •  Ullrich, P. A., T. Melvin, C. Jablonowski and A. Staniforth (2014), A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores, Quart. J. Roy. Meteorol. Soc., Vol. 140, 1590-1602
  •  Zarzycki, C. M., M. N. Levy, C. Jablonowski, M. A. Taylor, J. R. Overfelt and P. A. Ullrich (2014), Aquaplanet Experiments Using CAM’s Variable Resolution Dynamical Core, J. Climate, Vol. 27, 5481-5503
  •  Bosler, P., L. Wang, R. Krasny and C. Jablonowski (2014), A Particle/Panel Method for the Barotropic Vorticity Equation on a Rotating Sphere, Fluid Dynamics Research, Vol. 46, 031406
  •  Kent, J., P. A. Ullrich and C. Jablonowski (2014), Dynamical Core Model Intercomparison Project: Tracer Transport Test Cases, Quart. J. Roy. Meteorol. Soc., Vol. 140, 1279-1293
  •  Ullrich, P. A., C. Jablonowski and P. H. Lauritzen (2014), A high-order `incremental-remap’-based semi-Lagrangian shallow-water model, International Journal for Numerical Methods in Fluids, Vol. 75, 103-133
  •  Zarzycki, C. M., C. Jablonowski and M. A. Taylor (2014), Using Variable Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon. Wea. Rev., Vol. 142, 1221-1239
  •  Lauritzen, P. H., P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J. F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Soerensen, M. A. Taylor, and M. A. Tolstykh (2014), A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes, Geoscientific Model Development Discussions, Vol. 7, 105-145
  •  Yao, W. and C. Jablonowski (2013), Spontaneous QBO-like Oscillations in an Atmospheric Model Dynamical Core, Geophys. Res. Lett., Vol. 40, 3772-3776, doi:10.1002/grl.50723
  •  Chen, X., N. Andronova, B. Van Leer, J. E. Penner, J. P. Boyd, C. Jablonowski and S.-J. Lin (2013), A Control-Volume Model of the Compressible Euler Equations with a Vertical Lagrangian Coordinate, Mon. Wea. Rev., Vol. 141, 2526-2544
  •  Ullrich, P. A., P. H. Lauritzen and C. Jablonowski (2013), Some considerations for high-order `incremental remap’-based transport schemes: edges, reconstructions and area integration, International Journal for Numerical Methods in Fluids, Vol. 71, 1131-1151
  •  Lebonnois, S., C. Covey, A. Grossmann, H. Parish, G. Schubert, R. Walterscheid, P. Lauritzen and C. Jablonowski (2012), Angular Momentum Budget in General Circulation Models of Superrotating Atmospheres: A Critical Diagnostic, Journal of Geophysical Research (Planets), Vol. 117, E12004, doi:10.1029/2012JE004223
  •  Kent, J., C. Jablonowski, J. P. Whitehead and R. B. Rood (2012), Downscale Cascades in Tracer Transport Test Cases, Geoscientific Model Development, Vol. 5, 1517-1530
  •  Reed, K. A., C. Jablonowski and M. A. Taylor (2012), Tropical Cyclones in the Spectral Element Configuration of the Community Atmosphere Model, Atm. Sci. Lett., 13, 303-310, doi:10.1002/asl.399
  •  Ullrich, P. A. and C. Jablonowski (2012b), MCore: A Non-hydrostatic Atmospheric Dynamical Core Utilizing High-Order Finite-Volume Methods, J. Comput. Phys., Vol. 231, 5078-5108
  •  Kent, J., C. Jablonowski, J. P. Whitehead and R. B. Rood (2012), Assessing Tracer Transport Algorithms and the Impact of Vertical Resolution in a Finite-Volume Dynamical Core, Mon. Wea. Rev., Vol. 140, 1620-1638
  •  Reed, K. A. and C. Jablonowski (2012), Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs, J. Adv. Model. Earth Syst., Vol. 4, M04001, doi:10.1029/2011MS000099
  •  Ullrich, P. A. and C. Jablonowski (2012a), Operator-split Runge-Kutta-Rosenbrock (RKR) Methods for Nonhydrostatic Atmospheric Models, Mon. Wea. Rev., Vol. 140, 1257-1284
  •  Reed, K. A. and C. Jablonowski (2011c), Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR’s Community Atmosphere Model, J. Adv. Model. Earth Syst., Vol. 3, Art. 2011MS000076, 16 pp.
  •  Whitehead, J., C. Jablonowski, R. B. Rood and P. H. Lauritzen (2011), A Stability Analsis of Divergence Damping on a Latitude-Longitude Grid, Mon. Wea. Rev., Vol. 139, 2976-2993
  •  Reed, K. A. and C. Jablonowski (2011b), Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model, Geophys. Res. Lett., Vol. 38, L04805, doi:10.1029/2010GL046297
  •  Reed, K. A. and C. Jablonowski (2011a) , An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs, Mon. Wea. Rev., Vol. 139, 689-710
  •  Ullrich, P. A. and C. Jablonowski (2011) , An analysis of finite-volume methods for smooth problems on refined grids, J. Comput. Phys., Vol. 230, 706-725
  •  Ullrich, P. A., C. Jablonowski and B. van Leer (2010), Riemann-solver-based high-order finite-volume models for the shallow-water equations on the sphere, J. Comput. Phys., Vol. 229, 6104-6134
  •  Lauritzen, P. H., R. D. Nair and P. A. Ullrich (2010), A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid, J. Comput. Phys., Vol. 229, 1401-1424
  •  Lauritzen, P. H, C. Jablonowski, M. A. Taylor and R. D. Nair (2010) , Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison, J. Adv. Model. Earth Syst., Vol. 2, Art. #15, 34 pp., Article Spotlight December 2009
  •  Jablonowski. C., R. C. Oehmke and Q. F. Stout (2009), Block-structured Adaptive Meshes and Reduced Grids for Atmospheric General Circulation Models, Phil. Transaction Royal Society A, Vol. 367, 4497-4522, doi: 10.1098/rsta.2009.0150
  •  Ullrich, P. A., P. H. Lauritzen and C. Jablonowski (2009), Geometrically Exact Conservative Remapping (GECoRe): Regular latitude-longitude and cubed-sphere grids, Mon. Wea. Rev., Vol. 137, 1721-1741
  •  Williamson, D. L., J. Olson and C. Jablonowski (2009), Two dynamical core formulation flaws exposed by a baroclinic instability test case, Mon. Wea. Rev., Vol. 137, 790-796
  •  Jablonowski, C., P. H. Lauritzen, R. D. Nair and M. Taylor (2008), Idealized test cases for the dynamical cores of Atmospheric General Circulation Models: A proposal for the NCAR ASP 2008 summer colloquium, Technical Report, version May/29/2008 (download the report pdf format 8.5MB)
  •  St-Cyr, A., C. Jablonowski, J. M. Dennis, H. M. Tufo and S. J. Thomas (2008), A Comparison of Two Shallow Water Models with Non-Conforming Adaptive Grids, Mon. Wea. Rev., Vol. 136, 1898-1922
  •  Nair, R. D. and C. Jablonowski (2008), Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems, Mon. Wea. Rev., Vol. 136, 699-711
  •  Penner, J. E., N. Andronova, R. C. Oehmke, J. Brown Q. F. Stout, C. Jablonowski, B. van Leer, K. G. Powell and M. Herzog (2007), Three Dimensional Adaptive Mesh Refinement on a Spherical Shell for Atmospheric Models with Lagrangian Coordinates, Journal of Physics: Conference Series, 78, 012072 (download the pdf version 900 KB)
  •  Jablonowski, C., and D. L. Williamson (2006), A Baroclinic Instability Test Case for Atmospheric Model Dynamical Cores, Quart. J. Roy. Met. Soc., Vol. 132, 2943-2975
  •  Jablonowski, C., M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout, B. van Leer and K. G. Powell (2006), Block-Structured Adaptive Grids on the Sphere: Advection Experiments, Mon. Wea. Rev., Vol. 134, 3691-3713
  •  Jablonowski, C., and D. L. Williamson (2006), A Baroclinic Wave Test Case for Dynamical Cores of General Circulation Models: Model Intercomparisons, NCAR Technical Note NCAR/TN-469+STR, Boulder, CO, 89 pp. (download the pdf version 10MB)
  •  Penner, J. E., M. Herzog, C. Jablonowski, B. van Leer, R. C. Oehmke, Q. F. Stout, and K. G. Powell (2005), Development of an atmospheric climate model with self-adapting grid and physics, Journal of Physics: Conference Series, 16, 353-357 (download the pdf version 1.5MB)
  •  Jablonowski, C., M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout and B. van Leer (2004), Adaptive Grids for Weather and Climate Models, ECMWF Seminar Proceedings on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, UK, 6-10 September 2004, pp. 233-250 (download the pdf version 2MB)

Theses


Selected Presentations

  • Hughes, O. and C. Jablonowski (2021), Extending the Dynamical Core Test Case Hierarchy: Moist Baroclinic Waves with Topography, https://www.dwd.de/EN/specialusers/research_education/seminar/2021/pdes_on_the_sphere/pdes_2020_en_node.html, Partial Differential Equation (PDEs) on the Sphere Workshop, German Weather Service, Frankfurt, Online, 17-21 May 2021,
    download the presentation in pdf format below (17 MB, see also the publication by Hughes and Jablonowski, GMDD, 2023).
DCMIP tracer advection test case 11 graphs
DCMIP tracer advection test case 11: The figure shows snapshots of the tracer q1 at day 6 from a variety of dynamical cores that participated in DCMIP during the summer of 2012. All models were run at the approximate resolution of 110 km x 110 km with 60 equidistantly spaced vertical levels (dz = 200 m). Day 6 is the time when the tracer is maximally deformed. Details on the test suite are provided
Snapshots of day-10 wind speed of cyclone
The figure shows snapshots of the day-10 wind speed of an idealized tropical cyclone from the four dynamical cores FV, HOMME, EUL and SLD that are part of the NCAR Community Earth System Model CESM1. The resolutions are approximately 28 km (0.25 degrees) and 38 km (T340) with 26 vertical levels. An aqua-planet configuration with the CAM4 physics package is used. Details of the test are shown in Reed and Jablonowski (Mon. Wea. Rev. 2011; Reed and Jablonowski, JAMES 2012) and Reed and Jablonowski (Geophys. Res. Lett., 2011).
graphs various test cases with nonhydrostatic high-order finite-volume dynamic core
The figure shows snapshots of various test cases computed with the nonhydrostatic high-order finite-volume dynamical core described in Ullrich and Jablonowski (Mon. Wea. Rev. 2012). The large-scale example (top) depicts a breaking baroclinic wave in a periodic channel on an f-plane, the meso-scale example displays linear gravity waves triggered by a small mountain (not shown), and the micro-scale example shows a rising thermal bubble that mimics convection.

Updated on Dec/21/2023